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Abstract

This bachelor thesis proposes a new, artificial neural network and deep
learning–based processing chain for electroencephalographic data classification
and compares it to a classical, SVM–based processing chain (baseline). This
represents a strong interdisciplinary approach, using a biologically inspired deep
learning method on a neurocientific problem, while practical implementation
requires knowledge in computer science. Spatial and temporal filtering is
achieved through convolutional layers, as they have brought breakthroughs in
various fields of machine learning and pattern recognition in the recent past.
For a proof of concept, P300 data is used for training and testing the new node
within the pySPACE framework. Different preprocessing cases of EEG data are
compared to see whether data reduction is helpful or if it might be obstructive
when trying to generate subject independent features. Results of the project
show the successful implementation of an optimized, standard processing
chain with high classification accuracy for current and future EEG–aided
projects to improve human–machine interaction. While performance exceeded
the baseline in all tested cases significantly, the true potential of this technology
lies in subject transfer. Also, it is shown that classification performance is
superior when the data contains high frequencies. However, further studies
with more data are necessary to comprehend automatically generated features
and interpret their meaning in a neuroscientific relation.

Keywords: Brain–Computer Interface, Electroencephalographic Data Classifi-
cation, Deep Learning, Subject Transfer
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Zusammenfassung

Diese Bachelorarbeit stellt eine neue Verarbeitungskette zum Klassifizieren von
EEG Daten vor, basierend auf künstlichen neuronalen Netzen und Deep Learn-
ing und vergleicht diese mit einer klassischen, SVM basierten Methode. Dies
stellt einen hochgradig interdisziplinären Ansatz dar, welcher ein biologisch in-
spiriertes Verfahren auf ein neurowissenschaftliches Problem anwendet, während
die Implementierung auf Kenntnissen der Informatik basiert. Räumliche und
zeitliche Filter werden durch Convolutional Layer ersetzt, welche in naher
Vergangenheit Durchbrüche in verschiedenen Feldern von maschinellen Lern-
verfahren und Mustererkennung erzielen konnten. Als Machbarkeitsnachweis
verwendet diese Studie P300 Daten zum Trainieren und Testen eines neuetwick-
elten Knotens für das pySPACE Framework. Verschiedene Fälle der Vorverar-
beitung für EEG Daten werden miteinander verglichen, um festzustellen, ob
Datenreduzierung hilfreich ist oder das Generieren von subjekt–unabhängigen
Merkmalen erschwert. Die Ergebnisse des Projektes zeigen die erfolgreiche
Implementierung einer optimierten Prozesskette mit hoher Klassifikationsge-
nauigkeit für momentane und zukünftige Projekte zum Verbessern von EEG
basierten Mensch–Maschine Schnittstellen. Obwohl die Ergebnisse die Baseline
in allen getesteten Fällen signifikant übertreffen, liegt das wahre Potential dieser
Technologie im Subjekt Transfer. Außerdem konnte gezeigt werden, dass die
Klassifikation signifikant besser erfolgt, wenn die EEG Daten hohe Freqenzen
beinhalten. Trotzdem müssen weitere Studien zu diesem Thema mit mehr Daten
durchgeführt werden, um automatisch generierte Merkmale nachzuvollziehen
und ihre Bedeutung in einen neurowissenschaftlichen Kontext zu bringen.
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1 Introduction

Recent advancements in technology and neuroscience allow a more widespread
usage of brain signals to interact with the environment. Big enterprises such as
Facebook or Neuralink have declared establishing Brain–Computer Interfaces
(BCIs) into everyday life as one of their major goals for the upcoming decade. A
possible way to realize such interaction is given through reading and real time
interpretation of brain activity in the form of electroencephalographic (EEG)
data (Kirchner, 2014). In this context, BCIs can be seen as pattern recognition
systems for neuronal activity.

At the German Research Center for Artificial Intelligence (DFKI), there are
various projects working with this technology for different applications. To
identify certain events during online, single–trial brain signal decoding and
react accordingly, strong real–time classification is indispensable. For example,
a developed motion supporting exoskeleton needs to know planned movements
before being executed (Kirchner et al., 2013a, 2016b).

It is imaginable, that in the future the connection between the human brain
and computer technology opens up an extremely broad field of applications,
which cannot even be completely grasped just yet.

1.1 Vision & Motivation

The vision behind this project is that one day BCIs can be used with minimal
effort to effectively support industrial, medical as well as everyday tasks. To
achieve this goal, brain activity reading and processing must be improved. There-
fore, it must be the long term goal of the respective research groups to create
BCIs, ideally fulfilling the following vague requirements. The future BCI shall
be:

• Easy to use, without expert knowledge of neuro– or computer science,

• Applicable with minimized training and setup time,

• Robust to errors and

• Fast, granting real–time interpretation of relevant brain activities
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For improving brain signal reading, there are various projects currently work-
ing on novel data acquisition techniques, such as minimal invasive, long–term
brain implants (Minev et al., 2015) or dry electrode EEG (Lopez-Gordo et al.,
2014). However, this thesis is focused on improving the processing and classifi-
cation of obtained data.

When it comes to data processing, key to minimized training may be creating
subject independent features. It is imaginable, that future hardhats or headsets
with embedded dry electrodes are used for brain activity monitoring or to con-
trol assisting robots in simple or complex industrial scenarios. Evoked brain
signals appear somewhat different for each person (Luck, 2014). Also, depic-
tion changes over time, as electrode positioning and contact quality may vary
inner–session and from one day to another. Using only sparse information to
describe found features in measured brainwaves may lead to unrecognizability
and false classification, especially when applied to data of other subjects. How-
ever, the fundamental brain activities for each possible user remain the same
(Luck, 2014). So instead of learning a set of strongly simplified key features for
every eligible person, a very general dataset of desired patterns in EEG data
may help to reduce training time for each individual (Lemm et al., 2005). Such a
dataset could be automatically updated from monitored user data and thereby
be constantly growing. In an ideal case, it would make training obsolete after
all.

This theoretic scenario brings up some questions. Can such subject inde-
pendent features be found? And where would one look for them? A possible
solution to this problem could be deep learning. These relatively new state of the
art algorithms for classification problems are able to cope with great amounts of
data and learn relevant features automatically, even if they sometimes are too
abstract to grasp by human beings.

1.2 Project Objective

In this bachelor thesis a new, artificial neural network (ANN) and deep learning
(DL) based processing chain is created and compared with a classical processing
chain (baseline) for EEG data classification. This represents a strong interdis-
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ciplinary approach, using a biologically inspired DL method on a neurocientific
problem, while practical implementation requires knowledge in computer sci-
ence. Within this project the following key questions are ought to be answered:

1. Is the DL approach appropriate for P300 EEG data classification?

2. How much of the classical preprocessing and data reduction is necessary?

3. Can achieved results outperform existing processing pipelines on the same
data?

4. Can subject independent features be found?

In order to find respective answers, different setups for an ANN using state of
the art methods for spatial and temporal filtering will be tested. Taking different
examples from literature into consideration, evaluated factors include:

• Three different sampling rates,

• Three different frequency ranges,

• Spatial & temporal filtering with convolutional layers,

• Quantity of fully connected layers & included nodes and

• State of the art regularization methods

Result of the thesis should be an optimized, DL based, standard processing chain
with high classification accuracy for current and future EEG–aided projects to
improve human–machine interaction. The architecture shall be inspired by the
mentioned classical chain, which allows easy comparison to the baseline. This
project is important to pursue the overall goal of creating subject independent
BCIs, which allow application in various fields with minimized training. The
proposed processing chain shall be intuitive to use, even without major knowl-
edge of DL, neuroscience or complicated prior manual preprocessing.

The following Section introduces several state of the art components which
are important for this project. Section 3 explains the used dataset and methods
in detail. In Section 4, achieved results are displayed, evaluated and discussed.
The conclusion refers back to the above–stated research questions and sums
up where the project has lead, but also gives a short outlook on what is to be
expected in the future.
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2 State of the Art

As this project combines expertise from multiple fields of research, it involves
various methods and techniques of which their connection to one another may
not appear obvious at first sight. This Section will highlight some of the key
components of this project and their relation to one another. It is important to
understand that although some of the introduced concepts are based on ideas
from the early last century, it was not until now that technology has caught up
to a point, where combining them reveals the true potential lying within.

2.1 Brain–Computer Interfaces

A Brain–Computer Interface (BCI) is a communication pathway between the
central nervous system of living being and another external device. This term
was commonly used after Vidal (1973) published a review on the applicability
of electrically measured brain activity as control input for computer devices. He
suggested that ”such a feat is potentially around the corner” and tried to answer
the question whether BCIs might be used for ”controlling [...] prosthetic devices
or spaceships” (quoted from Vidal (1973)). Although the paper was written more
than four decades ago, the topic remains prevailing until today.

BCIs have two main components: One to obtain brain signals and the other to
interpret them. Kaur and Singh (2017) describe various ways to encounter the
given problem of establishing communication between a biological structure
and a technical device. A key factor to differentiate between BCIs is whether
invasive or non–invasive methods are used to read out signals from the brain.

(Partial) invasive methods, such as electrocortiogram or direct signal deriva-
tion from single braincells grant a comparatively better signal strength and
spatial assignability than it holds for non–invasive methods. However, they
have the obvious and great disadvantage, that one or multiple sensors have to
be placed underneath the skull through a surgical opening. This can be achieved
momentarily, while the skull remains open, or long–term with respective intra-
cortical implants. Nevertheless, a foreign object will be in direct contact with
the brain, potentially influencing its functionality or bringing up a risk for other
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complications such as inflammation, repulsion or damaging brain tissue. Secure
electrode arrays for long–term recording or stimulating neuronal cell activity,
which can be implanted minimal invasive, are currently subject of research but
have yet to persist in vivo (Gilmour et al., 2016). Also, these procedures bring
great cost and effort of preparation to the entire process and might in many cases
not withstand a risk–effectiveness consideration (Kaur and Singh, 2017).

Non–invasive methods also mostly rely on electrical measures of brain activ-
ity. This approach records signals less effectively, because the currents have to
pass the skull and other tissue before reaching the measuring electrodes. Theo-
retically, the needed equipment is well tested, movable, increasingly low–cost as
well as easy to use. The sparse signal–to–noise–ratio (SNR) and the sensitivity
to artifacts caused by external electrical contaminations are the greatest draw-
backs for this technology (Kaur and Singh, 2017). Consequently, experiments
are sometimes performed stationary within a shielded cabin. Ideally, a small
set of dry electrodes would be used for everyday applications of a BCI such
as the EMOTIV EPOC, granting minimized setup preparation time. Unfortu-
nately, it has shown to be unreliable in other research tasks and needs further
improvements to be considered a suitable state of the art technology (Duvinage
et al., 2013). This project is using brain signals recorded with the non–invasive
method of electroencephalography, briefly explained in the next subsection.

When signals have been received, further processing is necessary to correctly
identify and interpret relevant aspects. For this matter a computational unit
filters the data stream and uses at least one algorithm for signal classification.
Both key elements are objects of investigation in this project and will therefore
be explained in subsequent Sections.

Obtained information can be used to monitor relevant brain activity when per-
forming specific tasks (Kirchner, 2014), or predefined commands can be sent to
a device of which control is desired. There are various imaginable fields of mind
controlled applications, such as medical rehabilitation (Kirchner et al., 2016b), in-
dustrial and research–based robotic teleoperation (Muelling et al., 2015), or the
gaming industry (Kaplan et al., 2013). This technology is particularly interesting
for people that have no other option to communicate due to their inability of
muscle control (Locked–in syndrome) (Kaur and Singh, 2017).

– 5 –
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2.2 Electroencephalography

The idea that thoughts, emotions, behavior and character traits find their origin
in the human brain is quite old. Until the 20th century however, this theory
was hard to prove, as there was simply no way to measure and quantify such
abstract occurrences. A great leap was taken by Berger (1929) with his revolu-
tionary implementation of a device, able to sense electrical currents emerging
from the surface of the neocortex. This method is today well known and widely
spread under the name electroencephalography (EEG).

Despite various recent inventions, such as the functional magnetic resonance
imaging (fMRI), EEG obtains a significant position in research and diagnostics.
Hobson (2009) names four convenient main characteristics which justify this:
As mentioned before, this technique can be used non–invasive on the outside
of the scalp. It has an outstanding temporal resolution at the millisecond range.
Also, needed equipment is easy to use and considerably inexpensive, compared
to fMRI. But what seems to be the most important unique feature, is the ability
of the respective subject to be able to move freely throughout the process of
measuring its brainwaves.

Hobson (2009) further explains that the peripheral neurons of the neocortex
are generally arranged in a layered structure, while their main axes remain par-
allel towards one another. Each single cell induces an ionic current at its surface.
The neurons palisade like macro–structure creates an integration of these nearby
currents. When a neural population is activated in a synchronized matter, the
superposition of evoked extracellular currents can be measured with an elec-
trode of perpendicular orientation on the scalp. More abstractly speaking, the
brain can be seen as volume conductor with local differences in electrical poten-
tials. These different potentials can be measured in reference to either a specific
location or the overall mean value. Figure 1 shows this functional principle of
electroencephalography in a schematic matter.

After the potential differences have been recorded by the electrodes, an am-
plifier increases the original signal strength of few µV for each channel and
transforms it from analog to digital, so it can be further processed by a com-
puter.
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However, the assignability or spatial resolution of the incoming signals are
considerably weak. This is due to irregularities like the sulci of the cortex, the
tissue and bone layers between signal source and receiver and the big gap be-
tween the sensing electrodes compared to the neurons distance to one another
(Hobson, 2009).

In order to get comparable results between different subjects of investigation,
electrode placement is normalized. The number of used electrodes can vary
from only a few up to 256 at the moment. Figure 2 shows the 64 used electrode
positions in this project. This represents an extended version of the widely used
10–20 system (Jasper, 1958).

EEG data consists of overlaying sine–waves of diverse amplitudes, frequen-
cies and phase differences (Zschocke and Hansen, 2011). Specific frequency
ranges have been summarized to frequency bands of which the borders be-
tween them vary in literature. Table 1 shows the division of Zschocke and
Hansen (2011). The composition of measured EEG bands have been linked to
different conditions of brain activity. Most of the relevant portions of ERPs for
neuroscience consist of frequencies between 0.01 and 30 Hz (Luck, 2014).

Table 1: Frequency bands in EEG after Zschocke and Hansen (2011).

Name Frequency range [Hz] Example association
sub–δ < 0.5 Deep sleep

δ 0.5 – 4 Continuous–attention tasks
θ 4 – 8 Drowsiness, idling, repression
α 8 – 13 Perpetuation of vigilance
β 13 – 30 Active thinking, focus, high alert
γ > 30 Cross–modal sensory processing

The mathematical law of the Nyquist Theorem states, that any frequency of
half the sampling rate or less can be fully encoded within discrete samples. It
also states, that occurring frequencies of at least twice the sampling rate will
appear as low frequency artifacts within digitized data. However, in practice
the sampling rate should be three times the upper cutoff frequency (Luck, 2014).
This becomes important when considering different down sampling rates and
bandpass filters to process EEG data before training classification algorithms.
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Figure 1: Functional principle of electroencephalography, measuring emerging electrical cur-
rents at the surface of the skull. Graphic changed from Hobson (2009).

Figure 2: Setup of electrode placement for electroencephalography used in this project (acti-
CAP, 64 electrodes, Brain Products). The given letters indicates the brain region on which the
respective electrodes are placed: O occipital, P parietal, T temporal, C central, F frontal, Fp
pre–frontal.
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2.2.1 Event Related Potentials

Based on the EEG from Berger (1929), Davis (1939) studied effects of acous-
tic stimuli within brain activity. He was able to identify reoccurring patterns
linked to specific stimuli. Today we call these phenomena event related potentials
(ERPs). As they are small in size compared to the noisy EEG data, they are best
visible averaged over a number of trials (Sammut and Webb, 2011). Due to the
above–stated conditions under which EEG data is sampled, ERPs cannot easily
be allocated with a specific group of neurons, but the outstanding temporal res-
olution allows conclusions on sequential activations and occurring frequencies.

ERPs can have an external stimulus as a source, but can also be found as-
sociated with cognitive tasks (Luck, 2014). For example, lateralized readiness
potentials (LRPs) are evoked when movement of a specific limb is planned.
These information are valuable for BCIs that connect to medical rehabilitation
or prosthetic devices (Kirchner et al., 2016b; Li et al., 2014).

2.2.2 The P300 Wave

Polich (2007) describes the P300 (or P3) wave as a positive ERP component,
usually arising about 300 ms after a specific external stimulus of interest (e.g.
auditory or visual). The surfacing signal is typically best measured in the cen-
tral region of the head, e.g. electrodes Fz, Cz or Pz. He differentiates between
P300, depending on their origin and occurrence. In Oddball experiments, stim-
uli alternate between frequent standards and infrequent targets, as shown in
Figure 3. When no stimulus attribute change is detected, the current mental
model or schema of the stimulus context is maintained and only sensory poten-
tials are evoked. For P3a, perception of a rare or unknown stimulus is needed
and is associated with context memory updating, as shown in Figure 4. For
P3b, response of the subject to such a rare, task–relevant stimulus is required,
associated with an attention based task and respective neuronal activity.

Although P300 is suitable for brain activity monitoring, it may not ideal for
some BCI applications such as robot control, it is sufficient for this proof–of–
concept study. Motor imagery or LRP monitoring appears to be better suitable
for control tasks, as they directly represent user intention (Kirchner et al., 2013b).

– 9 –



Bachelor Thesis Justus F. Hübotter

Figure 3: The oddball task presents two different stimuli in a random sequence, with one
occurring less frequently (target = T) than the other (standard = S). If a perceived target stimulus
requires no further action, usually P3a is evoked. However, if the stimulus is task–irrelevant
and subjects are instructed to actively respond, this is associated with P3b. On the right an
averaged P300 wave is shown in contrast to an average standard response. Graphic and caption
changed from Polich (2007).

Figure 4: Schematic illustration of the P300 context–updating model. Stimuli enter the process-
ing system and a memory comparison process is engaged that ascertains whether the current
stimulus is either the same as previous stimuli or not. If the incoming stimulus is the same, the
neural model of the stimulus environment is unchanged, and sensory evoked potentials (N100,
P200, N200) are obtained after signal averaging. If the incoming stimulus is not the same and
the subject allocates attentional resources to the target, the neural representation of the stimulus
environment is changed or updated, such that a P300 potential is generated in addition to the
sensory evoked potentials. In this case however, subjects are looking for a predefined rare
stimulus instead of stimulus change. Graphic and caption taken from (Polich, 2007).
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2.3 Deep Learning

McCulloch and Pitts (1943) tried to explain how neurons in the brain might
work and thus modeled a simple neural network using electrical circuits. It was
not until 17 years later, when Widrow et al. (1960) used this model and first
computer technology to developed the Multiple ADAptive LINear Elements
(MADALINE), a simple artificial neural network. It was used for binary pattern
recognition and is applied for eliminating echoes on phone lines in modified
forms until today.

In their recent reviews, Schmidhuber (2015) as well as LeCun et al. (2015) de-
scribe the development of current artificial neural networks based on our basic
understanding of the human brain and the layered structure of the neocortex.
The plasticity of single cells, their connection to other cells and entire areas of
the brain can be abstracted as the in– or decrease of their unique connection
intensity. In simplified terms, the strength of this bond is dependent on the
quantity of its usage, first described by Hebb (1949).

This phenomenon has been model for todays architectures of ANNs, which
adapt neuronal connections through backpropagation and an assisting error func-
tion. This procedure is not further explained in this thesis as no changes are made
from the standard procedure which is closer elucidated by Hünniger (2013) or
Shamwell et al. (2016). The main ANN structure consists of an input layer, a
number of hidden layers and an output layer, each containing multiple artificial
neurons or nodes as shown in Figure 5. Each connection of individual neurons
has a weight value, which is updated after each training step of the network.
Every neuron sums up all connected outputs from the previous layer, multiplied
with the respective weight as shown in Figure 6. Depending on the neurons or
layer’s specific activation function, output is generated and forwarded to the next
layer. While this general feed–forward structure remains, size, shape and function
of different layers vary strongly for each use case and developer. The following
subsections introduce some state of the art techniques or layers relevant to this
project.

Bengio et al. (2007) proposed a deep feed–forward network for unsupervised
machine learning. This original model with multiple fully connected hidden

– 11 –



Bachelor Thesis Justus F. Hübotter

layers, allowed a deeper abstraction of the learned training data and its features,
later coining the term deep learning. A great advantage of DL is the automated
feature generation within the abstraction of training data in the ANN layers.
This generally allows to work with data without major knowledge about rele-
vant features beforehand.

A prevailing issue with this technology is the incomprehensibility of what
happens within the black box, making this technology unavailable for strongly
regulated services for now. Backtransformation and visualization of learned fea-
tures within convolutional layers through heatmaps, indicating each data point’s
relevance for the process is desired. This allows to regain information about sig-
nificance of individual learned features within a DL network and thereby draw
conclusions on the underlying (e.g. neurological) processes. Various methods
have been introduced, trying to track and explain individual network decisions
(Haufe et al., 2014; Krell and Straube, 2015; Sturm et al., 2016).

Since the introduction of DL, it was able to bring breakthroughs in various
fields of machine learning, such as processing images, video, speech, audio and
the respective recognition (Längkvist et al., 2014; LeCun et al., 2015; Schmidhu-
ber, 2015). Just alike videos and speech, EEG data has a relevant time depen-
dency (temporal dimension) used to create multidimensional features. Like-
wise, over the last years, various architectures for DL approaches have been
generated, to solve the key problems of spatial and temporal filtering on EEG
data (Schirrmeister et al., 2017). High accuracy reported within literature for
this pursue emphasizes the state-of-the-art position for this technology.
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Figure 5: General layered structure of artificial neural networks. A network can contain any
number of input and output neurons as well as hidden layers. Every connection between
neurons displayed by a thin arrow is associated with a weight value.

Figure 6: Artificial neuron model from Hünniger (2013). Each input xi is multiplied with the
respective neuronal connection weight wi j before being summed up. If the net input net j is
greater than the threshold θ j, it is forwarded to the nodes specific activation function ϕ to
calculate the output o j.

2.3.1 TensorFlow & Keras

When developing new DL architectures, respective research groups or enthu-
siasts do not have to build everything from scratch. Due to the rapidly arising
interest and success of this topic, one can make use of steadily growing libraries,
strongly optimized for the specific use of training ANNs.

One of these libraries is the open–source software Tensorflow developed by
Google (Abadi et al., 2015). It supports various low–level Application Program-
ming Interfaces (APIs), including one for Python. Low–level in this context
means, that it is meant to perform very basic calculations such as matrix multi-
plications and the underlying source code is optimized for respective operations
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in terms of speed. Although it is possible to develop ANNs solely within a Ten-
sorflow API, the library only supports some of the core functions and newly
developed features must be implemented by hand. This means that one would
write many lines of code to implement functions, which have been defined by
other people before and is therefore inconvenient and redundant.

While Tensorflow can be used for a wide range of applications, Keras is a high–
level, Python–based API specialized in developing DL architectures (Chollet
et al., 2015). It supports many novel functions like the ones listed in the upcom-
ing Subsections. The functions are predefined and can be implemented using
mostly one or few lines of code. When it comes to calculations, Keras uses
the highly optimized libraries of other software, momentarily supporting Ten-
sorflow or Theano. This means that Keras is dependent on this ”underneath”
laying software, which is expressed in the term Tensorflow–backend.

Graphics processing units (GPUs) are favored for DL due to their many cores
compared to conventional central processing units (CPUs). While sequential
code runs faster on CPUs due to higher clocking frequencies, GPUs are optimal
for simple, parallel processing such as the matrix multiplications in backpropa-
gation and feed–forward in convolutional layers.

2.3.2 Fully Connected Layers

As the name already implies, each neuron in these layers is connected to each
input neuron of the prior layer. This is the basic form of ANN layers, which can
be found in the first simple, analogue networks of McCulloch and Pitts (1943)
as well as Widrow et al. (1960). In todays computer models, every connection
between individual neurons has a weight value which is updated after each
training batch, an assemblage of a specific number of examples or instances.
Therefore, these layers tend to generate a great amount of data which slows
down the training process. This is not considered efficient for many applications
and although various activation functions can be used, functionality is limited.
Because of these drawbacks, network sparsity with improved functionality is
desired.
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2.3.3 Convolutional & Pooling Layers

Hubel and Wiesel (1962) studied neurons in the visual cortex, when they found
that some individual cells only responded in the presence of edges with specific
orientation within a restricted region of the visual field. These representations
are called simple features and the cells simple cells respectively. They also found
that these neurons are organized in a columnar architecture. In order for repre-
sent more complex features than straight edges, multiple arrays of such columns
are connected hierarchically, each combing inputs from previous layers. Within
only few layers, abstract features and geometrics such as e.g. faces or other
patterns can be represented. This was not only a great breakthrough in neuro-
science, but also model for convolutional neural networks or ConvNets.

Before backpropagation had established as the core function for learning in
ANNs, Fukushima (1980) created a computer–based, self–organizing neural
network for pattern recognition. This so called Neocognitron was based on the
findings of Hubel and Wiesel (1962) and thereby highly biologically inspired.
The fundamental scheme is shown in Figure 7. A functional unit includes a
simple layer, creating features on a map, each over an individual area on a
given input image. The subsequent complex layer combines created features by
respective fields, partially overlapping their neighbors. The connection of two
subsequent functional units is of modifiable intensity (weight). These units are
chained until original data is abstracted to a unique feature on a single output
neuron. An example process is described in Figure 8. This network was pri-
marily used for identifying single letters or digits. Due to overlapping sampling
from previous receptive fields, classification is unaffected by shift in position.
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Figure 7: Correspondence between the hierarchy model by Hubel and Wiesel (1962) and the
neural network of the Neocognitron: A simple and complex layer are combined to a functional
unit. The sequential artificial model includes all steps from the biological model starting with
perception, abstraction and finally association. Graphic and caption changed from Fukushima
(1980).

Figure 8: Neocognitron functional example: Input of a pixelized 4 (U0) is abstracted on a map
of 24 features by the following simple layer (US1). The following chain of simple and complex
layers result in a final abstraction (UC3), which uniquely represents given input. Graphic from
Fukushima (1980).
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After backpropagation had been established, the first ConvNets have been de-
veloped by Yann LeCun for image processing, somewhat based on the Neocog-
nitron (LeCun et al., 1995). Similar to the processing of visual input in the
occipital lobe of the human brain, first simple features such as lines and their
orientation are recognized by specific Kernels. Later in the process, these sim-
ple features combine and form nonlinear, more complex features, i.e. geometric
patterns or faces (LeCun et al., 2015). Convolutional layers are often found in
combination with following pooling layers, described below. In terms of the
work from Fukushima (1980), convolutional layers can be seen as an advance-
ment of the simple layers. Mathematically speaking, a filter window is moved
over an input matrix and for each position the dot product of input datapoints
and kernel weights result in the value (feature) on an accordingly shaped output
map as shown in Figure 9. Kernel weights remain the same for each position
on the input matrix. This strongly reduces the needed weights per layer com-
pared to fully connected layers but introduces the two hyperparameters filter
quantity, size and stride (step size of filter for each dimension of input). While
few handmade kernels from simple algorithms are sufficient for specific feature
extraction, convolutional layer usually rely on greater numbers of kernels with
randomly initialized weights. This often results in the network finding relevant
features for classification, where they would not have been expected at first
sight. ConvNets are commonly used for image processing and object recogni-
tion, containing convolutional layers within the early and midrange sequential
architecture to automatically generate feature maps. Therefore, 1D, 2D and 3D
convolution is natively implemented in Keras. However, these tools have been
alienated to process all kinds of data with similar input shape with great success
(Schmidhuber, 2015).

While convolutional layers are somewhat equivalent to simple cells in the
occipital lobe and the Neocognitron, pooling layers can be seen as respective
complex cells, combining previously generated features. They also have a dis-
tinct filter size and stride. Input features are compared and a forwarded feature
is chosen after a determined regulation. Two common methods for feature re-
duction are average pooling, creating the mean value of respective filter input,
or maxpooling, forwarding the greatest input value. The latter is shown in
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Figure 10. Usually, the presence of an existing feature in a vague region of an
input image is sufficient for classification, while the exact position may not be
needed. Thereby, performance becomes unaffected by minor changes in input
data, such as in handwritten digits or characters.

All in all, based on the research of Hubel and Wiesel (1962), the visual cortex
was model for a self–organizing visual pattern recognition algorithm, initially
developed by Fukushima (1980). It was later further modified by LeCun et al.
(1995) and is today a standard method used in DL. In this context it has been
diverted and applied to various types of data, such as EEG streams by Shamwell
et al. (2016) and many more.

Figure 9: Convolution with a filter size of 3 x 3 and a stride of 1 x 1 results in overlapping feature
generation. Multiplying input I with the kernel Kn (dot product) creates the output matrix.
Because the weights in Kn are the same for each position on I, considerably less weights need to
be stored compared to a fully connected layer creating the same output size. Each convolutional
layer can contain any number n filters of the same size and stride, each generating an individual
output feature map. Initialization is usually random.

Figure 10: Maxpooling with a filter size of 2 x 2 and a stride of 2 x 2: The greatest value within
the moving filter window is forwarded to the output feature map. Because filter size and stride
are equal in this example, input areas do not overlap.
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2.3.4 Activation Functions

As shown in Figure 6, every artificial neuron has an activation function to deter-
mine that neurons output, depending on the net input. While a biological neuron
cannot have a negative output, an artificial neuron potentially can. The weights
to the following layer determine whether its output operates in a, excitatory
or inhibitory matter. However, different activation functions have advantages
and disadvantages when used for DL. Figure 11 shows an overview on some
commonly used variations. One differentiates between bounded (tanh, logistic
sigmoid) and unbounded activation functions (identity, rectified linear unit).
Bounded activation functions have the disadvantage of a vanishing gradient,
while unbounded outputs tend to increase undesignedly high, distorting rela-
tion to other outputs. The latter can be controlled by regularization methods,
such as activation constraints. Hahnloser et al. (2000) first introduced the recti-
fied linear unit (ReLU), which has a steady gradient for positive net input and
induces network sparsity for negative net input. Due to these characteristics, it
is today one of the most commonly used activation functions for ConvNets.

The output layer of a network for classification usually works with softmax
function, converting its input to a probability between 0 and 1 for affiliation of
each class, while the sum of all probabilities remains 1.

Figure 11: Commonly used activation functions for artificial neurons. One differs between
bounded (tanh, log,...) and unbounded (ReLU, identity,...) output.
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2.3.5 Network RegularizationMethods

In the past years, several complementary functions have been added to the state
of the art methodology of DL to increase classification performance, prevent
overfitting or speed up training. The following paragraphs introduce and briefly
explain some procedures relevant to this project. This list is by no means
complete as uncountable variations exist and changes are introduced rapidly.

Early stopping As training proceeds, the network learns a general model of
given input data and training & validation error decrease. At some point, the
general model has been learned and the network starts to learn noise or very
specific examples of input data. At this point, validation loss usually starts to
increase again. Early stopping observes this (or any other) metric and stops the
training process. This might happen instantly or after some patience. In general,
early stopping is often used to prevent overfitting and automatically tunes the
hyperparameter of training epochs.

Learning rate reduction Instead of stopping training completely when vali-
dation loss stops decreasing, the learning rate can be reduced by any factor x to
keep optimizing the learned model without overfitting.

Local response normalization In neurobiology, the concept of lateral inhibi-
tion is well observed: An excited neuron subdues its neighbors. This contrast
amplification increases the overall sensory perception. In visual processing as
well as for the sensation of touch this promotes edge detection and alertness to
changes rather than to constant stimuli.

Especially when working with the ReLU activation function, creating theo-
retically unbounded output, some kind of response normalization is advised.
Therefore, Krizhevsky et al. (2012) proposed local response normalization (LRN)
to dampen activations which are equally large in any local neighborhood. This
creates an artificial inhibition and reinforces neurons with relatively large re-
sponses. However, this method is regarded outdated and is commonly replaced
with batch normalization.
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Batch normalization When the input distribution of an ANN changes, this is
called covariate shift. When it happens on internal nodes of an ANN, its called
internal covariate shift. A problem arises, because true data P(Y|X) is represented
by a model P(Y|X, θ) with θ being the parameters of the model, which are at best
an approximation of P(Y|X). This leads to a shift in training data distribution
compared to the true (global) distribution. Normalizing input data as part of
preprocessing (setting each features mean to 0 and variance to 1) can improve
classification accuracy. However, after just one layer output feature maps may
not be normalized anymore and this effect amplifies throughout an ANN. Feed–
forward and backpropagation are unsuitable tools to prevent internal covariate
shift. For shallow architectures resulting effects are minimal, but for truly deep
networks this issue is advised to be addressed.

Ioffe and Szegedy (2015) came up with a specialized algorithm to cope with
this problem. Extensively simplified speaking, batch normalization layers nor-
malize featuremaps of a training batch between other (nonlinear) layers. For
this matter, a new trainable scaling parameter βn is introduced, while dimen-
sionality n corresponds to the respective output size. This minimizes the effect
of small weight changes in initial layers on later layers and therefore generally
allows the usage of higher learning rates.

Dropouts Dropouts were initially proposed by Srivastava et al. (2014) and are
usually applied to the fully connected layers in the end of a ConvNet. The
dropout rate between 0 and 1 corresponds to the probability of every individual
neuron in respective layer to be deactivated for a single training example. This
reduces the general chance of overfitting and the formation of a grandmother
neuron, representing a single class. The entire model performance is less depen-
dent on specific neurons and thereby more robust. However, training time is
increased.
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L1 & L2 Regularization These methods penalize high weight values of an
ANN, thus they are also described as weight decay (Krogh and Hertz, 1992). While
L2 penalizes the square value of each weight, L1 uses the absolute value. L2
keeps weights low and L1 reduces them to zero if no strong gradient counteracts.
While the introduced sparsity makes networks simplified, easier to interpret
and may increase classification performance, L1 creates quite a number of dead
neurons which is in many cases not desired.

Kernel constraints This method simply constraints the weights of any layer
to be either in a specific range, e.g. force non–negativity, or to have a certain
mean value. Similar to the L1 regularization, a forced mean weight of 0 will
create a relatively large number of dead neurons.

2.3.6 Alternative to ConvNets

Another often used variant of ANNs for time series processing are recurrent nets
with long short–term memory (LSTM). While backpropagation is based on the
idea of a differentiable network, recurrent nets are theoretically infinitely deep.
Initially introduced by Hochreiter and Schmidhuber (1997), LSTM solves the
problem of dissolving error rates within deeper layers. In simplified terms, this
is achieved through omission of activation functions and storing given input
values over a specific (long or short) period of time. This method is successfully
used for classifying, predicting and processing time series data and is widely
spread in todays speech recognition software. Due to these characteristics, it
has also been applied on EEG data (Längkvist et al., 2014). However, as this
represents a fundamentally different approach in contrast to ConvNets, it is not
considered in this work, but is worth mentioning as it represents a potential
alternative in the search for subject independent features.
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2.4 EEG Data Classification

In real world applications, the main challenge of EEG–based BCIs is to suc-
cessfully identify target EPRs within noisy data streams. Due to their variable
appearance and small amplitudes, it is not easy to differentiate them from the
more often occurring standard waves, as no response averaging can be made. In
its simplest form this represents an unbalanced, binary classification scenario.

When EEG data is recorded in experimental setups, markers are added to the
raw EEG signals, allowing supervised machine learning algorithms to be trained
on the respective data. For this purpose, the data stream is usually segmented
into windows of a set length, each beginning at a previously marked position.
Besides this partitioning, there are various techniques used to preprocess EEG
data. Usually, dataset size reduction for faster processing with minimal infor-
mation loss is desired. Commonly used methods include down sampling and
bandpass filtering to the desired frequency range, standardizing windows for a
better SNR, using fewer channels or creating new pseudo–channels, abstracting
wave segments through simple features and normalizing these once again.

After preprocessing, there is a great amount of single or multiple classification
algorithms that can be trained on specific datasets to later eventually correctly
recognize unknown test data. Every algorithm has advantages and disadvan-
tages, so there is no single best option and each use case should be carefully
considered. Prior approaches in this field used for example Support Vector
Machines (SVMs), Restricted Boltzmann Machines, regularized Linear Discrim-
inant Analysis or combinations of various other standard machine learning
algorithms (Lotte et al., 2007). Classification performance can be measured by a
vast variety of metrics, also having individual focuses of importance.

With this multiplicity of options and tunable hyperparameters for a seem-
ingly easy initial problem, comes a complicated comparability of procedures.
Therefore, it is important to have a clearly defined baseline and metric to decide
whether a newly developed or applied algorithm is better than another or not.
Unfortunately, published papers do not always share their explicit processing
chain or interim results, making comparison and replicability even harder.
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2.4.1 pySPACE

Handling great amounts of EEG stream data can be challenging. Also, trying to
effectively compare the steadily growing number of possible machine learning
tools for preprocessing and classification may get complicated easily. Therefore,
Krell et al. (2013) introduced and set up an automated and Python–based signal
processing and classification environment (pySPACE). This software is special-
ized in processing multi–sensor windowed time series data, such as ERPs in
EEGs. It is highly modular and contains a growing number of algorithms of
which some are shown in Figure 12. When multiple CPUs or GPUs are avail-
able, parallelization is automated. Configuration is possible through files in the
YAML format, making understanding of Python redundant for users. Different
approaches can be defined as node–chains, optimized, compared and then saved
as a standard reference flow. Next to widely used libraries, like for example the
Scikit–learn tools, some handy extensions such as a cross–validation splitter,
grid search and result visualization scripts are contained. Furthermore, self–
developed or preexisting algorithms can easily be added, as done within this
project. All in all, this framework is a strong asset to research groups performing
experiments with EEG or similar time series data.

Figure 12: pySPACE overview showing some of the processing nodes of respective categories.
Some of the used nodes have been highlighted in green. Graphic changed from Krell et al.
(2013).
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2.4.2 SVM Baseline

Kirchner et al. (2016a) developed a data processing chain for classification of
P300, consisting of eight subsequent steps, as shown in Figure 13 A. The orig-
inal continuous raw EEG stream is obtained with a 5 kHz sampling rate on 64
channels. The data is processed by a DC removal filter to center the signals
around zero. Prior experiments have shown that the major part of the P300 ERP
is represented in the δ–band. Therefore, the sampling rate is decimated to 25 Hz
and a cutoff frequency of 4 Hz is applied as an anti–alias filter. Continuous data
is segmented into 1 s windows. For spatial filtering the xDAWN filter (Rivet
et al., 2009) is used to reduce dimensionality, remove artifacts and improve the
SNR. Eight most relevant pseudo–channels remain for further processing. For
feature generation, straight lines are fitted to 400 ms long segments of every win-
dow with 120 ms intervals (see Figure 13 B). Obtained features are normalized
by setting their mean value to 0 and respective standard derivation to 1. Subse-
quently, a SVM is trained and used for binary classification. At last, a threshold
optimization is performed to increase future classification accuracy. This proce-
dure shall be the baseline for the new signal processing and classification chain
proposed in this project.

Figure 13: A P300 SVM baseline reference flow based on strong data reduction and SVM clas-
sification. B The entire information within the 1 s window is broken down to six local straight
line features, more specifically to respective slopes. Following classifier can retain information
on vague curve development but has no knowledge of contained frequency spectrum. This is
reportedly sufficient when ERP representation remains similar. Graphic from Kirchner et al.
(2016a).
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2.4.3 ConvNets applied to EEG Data

The potential advantages of deep learning applied to EEG data are well summa-
rized by Schirrmeister et al. (2017). The research group considers various studies
focused on movement related data and cognitive tasks as models for a novel
DL architecture. Taking multiple examples from literature into examination,
results show better classification performance for deeper networks. While not
requiring hand crafted features, DL enables end–to–end learning on raw data.
A great advantage is also, that this generally allows to analyze learned features
and weights as well as activation (output) for a specific input. With the help
of novel visualization techniques, mapping such ConvNet characteristics back
to the surface of the skull, frequency bands or temporal windows, this grants
to draw conclusions about fundamental neuronal activities. Such knowledge is
hard or impossible to acquire when working on heavily reduced data. In the
conclusion it is stated that ”ConvNets are not only a novel, promising tool in the EEG
decoding toolbox, but combined with innovative visualization techniques, they may also
open up new windows for EEG–based brain mapping” (quoted from Schirrmeister
et al. (2017)).

A major problem with BCI technology is subject transfer, as EEG data varies
strongly between tested individuals and even the moment of data capturing.
One would need a great amount of data from multiple subjects, performing
a similar task (paradigm) to avoid overfitting the particular ANN. In order to
use DL for BCIs with minimized training time, subject independent features
are proposed. This has been matter of recent studies, for example discussed by
Shamwell et al. (2016). Not only did they outperform a classical xDAWN–based
classical processing chain, using visualization techniques, they are able to show
where subject independent features are assumed to be.
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2.4.4 ConvNet Baseline

Shamwell et al. (2016) use a ConvNet for EEG data classification to detect P300.
The EEG data originates from 18 subjects performing a rapid serial visual pre-
sentation image triage task, presumably evoking a P3a. It is sampled at 1024 Hz
on 256 scalp electrodes and reduced to 64 electrodes most closely according to
the standard 10–10 system. The dataset is sub–sampled to 256 Hz and bandpass
filtered between 0.5 and 50 Hz. Therefore, it contains information from all fre-
quency bands except sub–δ. The data stream is segmented into windows of 1 s.
The resulting single training examples have a dimension of 256 x 64 datapoints.
Although this is a 2D matrix representation, neighboring datapoints of the two
dimensions do not posses the same relationship as they do in classical images.
Therefore, applied filters for both dimensions are first handled separately and
only later combined to create spatio–temporal features.

Key structure of the algorithm is a multilayer artificial neural network. It
consists of four convolutional, two pooling and three fully connected layers as
shown in Table 2 and Figure 14. The first two convolutional layers (T1 & T2)
and the intermediate pooling layer create 128 feature maps and only reduce the
temporal output dimension from 256 to 11. This represents a temporal filter
with automated feature generation. Subsequently the convolution of layer S1
and the following second pooling layer create 512 feature maps by reducing
the spatial dimension from 64 datapoints to 1. Afterwards, the final temporal
convolution processes the data to 256 feature maps of only one datapoint each.
After every convolution, LRN is applied as a regularization method. In the end
of the network two fully connected layers with 500 nodes each and a dropout
rate of 50 % are implemented before the output layer with two neurons, one for
each class. Both fully connected and all convolutional layers each have a ReLU
activation function. The output layer has a softmax activation function to map
network output to a classification class probability distribution and determines
the binary cross–entropy loss value.

The order of placing the temporal filter before the spatial filter is chosen be-
cause the temporal dimension reportedly contains more relevant information
about the presence of an ERP within EEG data windows. While for traditional
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ConvNets for image processing filter size and stride are chosen equally great, in
the applied filters size is greater than stride which creates strong overlapping.
This has also been reported to be helpful reducing the error rate and overfitting
by Krizhevsky et al. (2012).

In order to find subject independent features, the network is trained on half
the dataset (9 subjects) and tested on the other half. The number of standard
training examples is reduced to the number of targets to create class balance,
which reportedly improves stochastic gradient decent optimization. Learning
rate decay is used when validation loss flattens and early stopping when it stops
decreasing to avoid overfitting.

Table 2: Baseline ANN model from Shamwell et al. (2016). After each convolutional layer, LRN
is applied.

Layer Filter size Stride Output size
Convolution T1 64 x 1 4 x 1 128 @ 49 x 64
Pooling 3 x 1 2 x 1 128 @ 24 x 64
Convolution T2 4 x 1 2 x 1 128 @ 11 x 64
Convolution S1 1 x 64 1 x 1 512 @ 11 x 1
Pooling 3 x 1 2 x 1 512 @ 5 x 1
Convolution T3 5 x 1 1 x 1 256 @ 1 x 1
Fully Connected Dropout 50 % 500
Fully Connected Dropout 50 % 500
Fully Connected 2

Figure 14: Baseline ANN model based on convolutional layers for spatial and temporal filtering.
Graphic taken from Shamwell et al. (2016).
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3 Methods

3.1 The Brio Dataset

The P300 data used for training and testing of the ANNs as well as comparison
to the SVM baseline has been generated in 2009 and is provided by the German
Research Center for Artificial Intelligence (DFKI). Six subjects each completed
five experimental sets a day on two separate days in a Virtual Labyrinth Oddball
setup as shown in Figure 15 (Kirchner, 2014). The five sets per day are combined
into one session for this project.

In the shown Oddball task, subjects are instructed to actively respond only
to the target stimuli and otherwise to refrain from responding, evoking a P3b.
However, subjects are also performing a primary task (dual task scenario), which
induces additional neuronal activation measured by the EEG. Kirchner et al.
(2016a) filter only a band between 0 and 4 Hz in order to separate the P300
as good as possible. However, by doing so, even relevant information for
ERP recognition in higher frequency bands are ignored.The original ratio of
task–relevant target to task–irrelevant standard stimuli is approximately 1 : 6.
Because subjects sometimes miss targets, this ratio becomes further unbalanced.
The exact numbers of usable examples for each session are listed in Table 4.

Figure 15: While working on a main task (BRIO Labyrinth Game) the subjects are shown visual
stimuli over a head mounted display (HMD). Subjects are instructed to use the buzzer only
when displayed corners on the left and right side appeared bigger than on the upper and lower
corner (target stimulus). EEG data is recorded on a 64 channel actiCAP and markers added for
the respectively shown stimulus. Graphic changed from Woehrle et al. (2015).
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3.2 EEG Data Preparation

Due to the ideal case of a BCI performing classification in real-time, prepro-
cessing should be optimized, taking as little time as possible but enabling fast
classification. While raw EEG can be used for DL, a common and fast approach
to process EEG data is the bandpass filter to increase the SNR and classification
performance. Furthermore, the sampling rate can be varied to minimize the
data size per example and further processing time. Both characteristics of EEG
data, sampling rate and contained frequency bands, are somewhat dependent
on another as described in subsection 2.2.

Different variations of sampling rate and bandpass filter are subject of inves-
tigation in this study. This is examined to determine if higher frequency bands
contain valuable information to increase ERP classification accuracy, which
might also be helpful to create subject independent features. Schirrmeister
et al. (2017) list various suitable ConvNet based studies to identify ERPs with
low cutoff frequencies reaching from 0 – 8 Hz and high cutoff from 15 – 200 Hz.

First, two channels are removed from the data, as they do not contain EEG
information. Before dimensionality reduction, time series data is segmented in
windows of 1 s length each, starting with a marker of either standard or target
stimulus. Afterwards, each window is standardized, setting respective mean
value to 0 and the standard deviation to 1. Because of the functional principles
of DL, no further feature generation or manual selection is necessary. Table 3
shows all nine different cases tested in this project. While case 1 represents raw
input data, case 6 is equivalent to the baseline from Shamwell et al. (2016) and
case 9 refers to Kirchner et al. (2016a). Each case fulfills the guideline proposed
by Luck (2014) which states, that the sampling rate should at least be three times
as high as the upper cutoff filter frequency to minimize induced artifacts.

Figures 16, 17 and 18 show standard and target average ERPs from subject 3
session 2 electrode Pz for cases 1, 6 and 9 respectively. In given examples the
difference between target and standard are well visible. The courses of curves
are similar for the first 300 ms until the P300 peaks clearly exceed the standard
waves. Compared to the description of Polich (2007) however, P300 appears
considerably late and flat (Kirchner, 2014).
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Table 3: All different preprocessing cases. While cases 3, 7 and 9 include only sub–δ & δ band,
other cases also include higher frequency ranges.

Case # Sampling rate [Hz] Bandpass filter [Hz]
1 1000 none
2 1000 0.5 – 50
3 1000 0 – 4
4 250 none
5 250 0 – 50
6 250 0.5 – 50
7 250 0 – 4
8 25 none
9 25 0 – 4

Figure 16: Average graphs for preprocessing case 1 (raw data) for both standard (blue) and target
(red) from subject 3 session 2 electrode Pz. Sampling frequency: 1000 Hz. Bandpass filter: None.
Data is standardized and curves aligned to display resemblance, scaling remains accurate.
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Figure 17: Average graphs for preprocessing case 6 (baseline Shamwell et al. (2016)) for both
standard (blue) and target (red) from subject 3 session 2 electrode Pz. Sampling frequency:
250 Hz. Bandpass filter: 0.5 − 50 Hz. Data is standardized and curves aligned to display
resemblance, scaling remains accurate.

Figure 18: Average graphs for preprocessing case 9 (baseline Kirchner et al. (2016a)) for both
standard (blue) and target (red) from subject 3 session 2 electrode Pz. Sampling frequency: 25 Hz.
Bandpass filter: 0−4 Hz. Data is standardized and curves aligned to display resemblance, scaling
remains accurate.
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3.3 Data Augmentation

Size of the training datasets is crucial to avoid both, over– and underfitting. A
potential problem for DL applied to EEG data is that the dataset is too small
compared to the number of tunable model parameters. In general, it can be
said that the bigger a dataset, the more abstraction of relevant features can be
made, decreasing the risk of overfitting to specific or unique examples. Also,
unbalanced class distribution can influence network behavior during training.
An overrepresented class will be learned more intensively and will therefore be
classified correctly more often than underrepresented classes.

There are some common ways to counter the described issue. The error–
function can be expanded with factors (weights) to put emphasis on certain
classes during training (cost–sensitive training) (Khan et al., 2015). However,
it can be quite challenging to find suitable weights, especially when multiple
classes of varying size are involved. Instead, class distribution can be made even
by withholding random training examples from the overrepresented classes, un-
til every class has the same size as the smallest class. Unfortunately, this method
does not make use of all available training data and contained information.

In order to maximize usable examples, Krell and Kim (2017) propose data aug-
mentation through spatial and temporal distortions of EEG signals. This can
either increase the entire dataset or be applied only to underrepresented classes
in order to improve the respective class-ratio. Temporal augmentation can be
achieved through a small positive or negative window offset on the same data.
Spatial distortions occur naturally in EEG data, as electrodes slightly shift po-
sition during and between sessions. Rotational augmentation can be achieved
through retrospectively induced artificial electrode shift along the main rota-
tional axes of the head, shown in Figure 19 (Krell and Kim, 2017). Therefore,
normalized input data is interpolated, based on a radial basis function from
SciPy. Later, new electrode positions are determined by multiplying interpo-
lated input data with the standard rotation matrix of respective axis. This is
done for each point of time and associated amplitude.

Data augmentation has enhanced network performance in multiple cases
(Krell and Kim, 2017; Krizhevsky et al., 2012). Thus, this project uses rotational
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augmentation of target EEG signals and afterwards standard examples are re-
duced to match the number of targets by pySPACE on a random basis. EEG
data is augmented by the respective pySPACE node, by rotation around the y–
and z–axis for -22, 0 & 22 degree. These hyperparameters were chosen, relying
on the results from Krell and Kim (2017). Table 4 shows the impact of data
augmentation on the number of usable examples. In this case, augmentation
increased used training data by factor 5.

Figure 19: Axes for rotational data augmentation. In this project, augmented targets only
are generated, originating from rotation around y– & z–axes by 22◦ in positive and negative
direction. Graphic changed from Krell and Kim (2017).

Table 4: Class–size of standards and targets before and after data augmentation used for training.
To balance classes for training, used examples equal twice the size of the underrepresented class
(targets). Due to great difference in class distribution, only targets needed to be augmented to
increase the total amount of used examples by factor 5.

Before Augmentation After Augmentation
Dataset Std. Tar. Total Used Tar. Total Used
Subj. 1 Sess. 1 3938 382 4320 764 =̂ 17.7% 1910 5848 3820 =̂ 65.3%
Subj. 1 Sess. 2 4021 361 4382 722 =̂ 16.5% 1805 5826 3610 =̂ 62.0%
Subj. 2 Sess. 1 3842 460 4302 920 =̂ 21.4% 2300 6142 4600 =̂ 74.9%
Subj. 2 Sess. 2 3763 507 4270 1014 =̂ 23.7% 2535 6298 5070 =̂ 80.5%
Subj. 3 Sess. 1 3728 501 4229 1002 =̂ 23.7% 2505 6233 5010 =̂ 80.4%
Subj. 3 Sess. 2 3700 536 4236 1072 =̂ 25.3% 2680 6380 5360 =̂ 84.0%
Subj. 4 Sess. 1 3650 545 4195 1090 =̂ 26.0% 2725 6375 5450 =̂ 85.5%
Subj. 4 Sess. 2 3594 567 4161 1134 =̂ 27.3% 2835 6429 5670 =̂ 88.2%
Subj. 5 Sess. 1 3851 496 4347 992 =̂ 22.8% 2480 6331 4960 =̂ 78.3%
Subj. 5 Sess. 2 3738 510 4248 1020 =̂ 24.0% 2550 6288 5100 =̂ 81.1%
Subj. 6 Sess. 1 3777 479 4256 958 =̂ 22.5% 2395 6172 4790 =̂ 77.6%
Subj. 6 Sess. 2 3684 552 4236 1104 =̂ 26.0% 2760 6444 5520 =̂ 85.7%
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3.4 Network Architecture

While the main structure of tested ANNs is inherited from Shamwell et al.
(2016), described in Section 2.4.4, some changes are applied. Batch normaliza-
tion layers are tested in this project to replace LRN, which is not used. Also, the
number of dense layers and included neurons are parameterized. The spatial
filter dimension is set variable to respective input, 62 channels in this project.
Furthermore, three different sizes of the initial temporal filter are tested. Finally,
the stride and dimension of the initial temporal filter and subsequent pooling
filter are adjusted. As this project considers three different sampling rates, these
four parameters are subject to scaling. This process is automated by introduc-
ing the respective factor as a variable with dependency on the temporal input
dimension. Functionality of the developed network is thereby theoretically un-
affected by the input sampling rate or channel quantity. The number of trainable
parameters varies, so saved models can only be applied to input of the same
shape that they have been trained on. The final number of trainable parameters
for each case is dependent on introduced hyperparameters in this Section and
is therefore only determined after optimization (see Section 4.1).

3.5 Training & Testing

In this project, Keras v. 2.0.5 and Tensorflow v. 1.1.0 are used to implement
tested functions in the DL architecture. All experiments in terms of training and
testing the created DL networks are performed on a GPU–cluster, provided by
the DFKI. Employed key hardware components are six nVidia TITAN X GPUs.
In all cases, 15 % of each training set is separated as a validation set by Keras.
During training, loss is calculated as binary crossentropy and optimization is
handled by the Adam algorithm, introduced by Kingma and Ba (2014).

For a session transfer scenario the sets of a single day are consolidated to a
session, leaving twelve individual datasets for training. After training, data of
the same subject recorded on another day was used as the test set.

In a subject transfer scenario both sessions of all subjects but one are combined
for training, generating six datasets. To check if subject independent features
are learned, testing is carried out on both sessions of the remaining subject.
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3.6 Hyperparameter Optimization

Along the hyperparameters introduced in Section 3.4, key hyperparameters for
learning rate, batch size and regularization methods are optimized (see Section
2.3.5). Table 5 lists all twelve incurred variables and tested values. Due to lim-
ited time and computation power, the number of considered values is relatively
small for each parameter. Also, due to the high number of possible combinations
emerging from this twelve–dimensional optimization problem, hyperparame-
ters were optimized in separate sub–sets. Therefore the assumption is made,
that found local optima remain valid when all hyperparameters are considered.
Optimization is carried out in a session transfer scenario with preprocessing
case 6. Results of this Section are evaluated based on the validation accuracy.

Table 5: Tested values for hyperparameters. Considering only few options for every parameter
and some constraints results in a great number of possible combinations. Therefore, optimization
was carried out in sub–sets, separated by lines.

Hyperparameter Tested values
Temporal filter size 50 35 20

Dense layer number 1 2 3 4 5 6
Dense layer size 250 500 750 1000 1250

Learning rate 1e-02 1e-03 1e-04 1e-05 1e-06
Early Stop patience 5 10 20 30 50
Learning rate reduction 0.1 0.2 0.5 0.8 none
Learning rate patience 4 6 8

Batch norm. momentum 0.97 0.99 none
Batch size 32 64 128 256

Dropout 0.0 0.5

L2 regularization 0.0 0.0001 0.001 0.01 0.1

Kernel constraints 0 0.01 0.05 0.1 0.5 1
Possible total combinations: 7,722,000
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3.7 Evaluation

Sammut and Webb (2011) provides a broad spectrum of evaluation methods for
machine learning. Classification results can be displayed in a confusion matrix
as shown in Table 6.

Table 6: Confusion matrix for binary classification performance analysis.

Condition positive Condition negative

Prediction positive True positives (TP) False positives (FP)
Prediction negative False negatives (FN) True negatives (TN)

Based on these four absolute numbers, various metrics can be calculated to
evaluate classification performance. However, not all metrics are suitable for
each problem. First the true positive rate (TPR) and true negative rate (TNR)
can be calculated.

TPR =
TP

TP + FN
(1)

TNR =
TN

TN + FP
(2)

In this case of two unbalanced classes, balanced accuracy (BACC) is proposed by
Straube and Krell (2014), due to its insensitivity to changes in class distribution.

BACC =
TPR + TNR

2
(3)

Plotting the TPR over FPR (= 1 − TNR) in dependency of a classifier parameter
such as the decision boundary results in a receiver operating characteristic (ROC)
curve. An ideal classifier would reach a TPR close to 1 while the FPR remains
close to 0. This generates a steep incline of the ROC curve, thus increasing
the area under the curve (AUC). Since threshold optimization is not part of this
project, as it can easily be automated, ROC curves are not included in the results.
AUC however, is a commonly used metric to compare classifier performance
and is also insensitive to class distribution. Figure 20 shows an example of a
ROC curve to clarify this quite abstract metric. For both metrics, BACC and AUC
a value of 0.5 represents a guessing classifier and 1 means perfect classification.
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To check results of different preprocessing cases and classifiers, an analysis
of variance (ANOVA) test for repeated measures is applied to the BACC of
achieved results of session transfer (Girden, 1992). For subject transfer result
analysis, a Wilcoxen sign-rank test is performed. Because the statistic design,
hypothesis definition and results interpretation are conducted with the help of
Dr. Su–Kyoung Kim, results are shown in the appendix of this thesis.

Figure 20: ROC curve example: Grey line represents a guessing classifier with an AUC (orange)
of 0.5. The convex line intersects those points on the ROC curve which are optimal under some
specific class distribution. The slope of each segment gives the class ratio under which the two
end points of the segment yield equal accuracy. All points under the convex hull are nonoptimal.
Figure and caption partially changed from Sammut and Webb (2011).
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4 Results & Discussion

4.1 Hyperparameters

The following paragraphs show some of the emerged results for hyperparameter
optimization. Due to the great number of tested variations and combinations not
all findings can be displayed. Medians or surrounding boxplots often suggest
only minor differences in balanced validation accuracy. In some cases a visual-
ization over all sessions is unclear, so even improvements in median or mean
value relatively small to overall variance are regarded. Furthermore, recorded
balanced validation accuracies vary depending on observed parameter. These
absolute values cannot be compared as the network may have been adjusted
according to previous findings.

Although results for individual regularization methods are promising, em-
pirical testing has shown that the previously stated assumption concerning
combination of local optima is wrong. As optimization is performed relying on
the balanced validation accuracy, considered regularizations sometimes proved
to be obstructive for classification on the test set. This is believed to be due to the
fact, that the validation set is part of the same data (day of recording) the training
set emerges from. The data is too similar and therefore facilitates undetected
overfitting to trained sessions characteristics. However, detected overfitting for
session transfer is minimal, so further regularization hyperparameters are hard
to tune and respective methods appear obsolete. For this reason, shown results
may contain a value for apparent optimum as well as a value chosen for further
processing.

Temporal filter size Results for comparison of different initial temporal fil-
ter sizes are shown in Figure 21 and the optimal tested value is 50, retained
throughout further experiments. Although this parameter is subject to scaling,
the initial temporal filter covers a 200 ms window on input data in all cases. Also
overlap is considerably great with 180 ms or 160 ms for 250 & 1000 Hz or 25 Hz
sampling rate respectively.
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Dense layer quantity & size Comparison of different quantity and size of
dense layers at the end of the network is shown in Figure 22. Compared to
Shamwell et al. (2016), the number of neurons per layer was reduced from 500
to 250. This seems reasonable, hence this project uses smaller datasets in general.
Although three layers seem to create minor improvements, two layers were used
throughout further experiments.

Figure 21: Initial temporal filter size of 50 showed best balanced validation accuracy. However,
this parameter is subject to scaling for different input dimensions.

Figure 22: Dense layer quantity & size comparison. For this comparably small dataset, less
neurons per layer seem preferable. Chosen values: 2 layers with 250 neurons each.
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Learning rate Comparison of considered learning rates shows that 1e-04 is
best suitable for this use case, as shown in Figure 25. Empirical testing with
higher stop patience could improve validation accuracy for smaller learning
rates, but was not able to exceed results emerging from a learning rate of 1e-04.
To prevent excessive overfitting, training is stopped early when validation loss
stopped improving for 30 epochs.

Figure 23 shows curves for training and validation loss over epochs. While
training loss reached approximately 0 after 19 epochs, the flat course of valida-
tion loss after this point indicates that no significant overfitting to training data is
acquired. To verify this, models are saved at the point of training loss becoming
approx. 0 and after early stopping is triggered by Keras. Tests on the training
set show, that the latter model achieved better balanced accuracies. Figure 24
shows that standards and targets are learned equally well during training.

During the training period of potential overfitting, learning rate decay is tested
to improve validation accuracy and loss. For a learning rate of 1e-04, no decay
is most suitable as shown in Figure 26. However, for smaller learning rates this
method seems useful, as shown in Figure 27. Shamwell et al. (2016) also report
learning rate decay as helpful, but they applied training over a distinctly larger
number of epochs, hence using a comparably small learning rate to begin with.
Throughout this project, learning rate decay is not further considered.

Figure 23: Example for training and validation loss for session transfer. The flat course of
validation loss after training loss reached approx. 0 is a clear sign for minimal overfitting.
This is verified by comparing classification results on test data of the two models saved at red
indicators.
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Figure 24: Classification accuracy on training and validation set as well as true target rate
(TTR=̂TPR) and true standard rate (TSR=̂TNR) on validation set. The similar course and final
value of TTR and TSR implies that both classes have been learned equally well. Example graphic
from subject 3.

Figure 25: Validation accuracy for different learning rates & early stop patience values. Chosen:
Learning rate: 1e-04 & stop patience: 30.
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Figure 26: Results for learning rate reduction & reduction patience. Factor of 1.0 equals no
learning rate reduction besides induced through Adam (Kingma and Ba, 2014), which generated
best validation accuracy.

Figure 27: Learning rate reduction for smaller learning rate of 1e-06. Even though relatively
short stop patience of 30 is active, learning rate reduction of 0.2 and reduction patience of 8 was
able to increase performance by 0.5 %, but could not surpass performance from a learning rate
of 1e-04. Effect might have been even more clear with longer patience. Great standard deviation
comes from subject differences.
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Batch size & normalization Figure 28 shows the validation accuracies for net-
works with and without batch normalization and variable batch size. The results
imply that batch normalization was able to improve performance, especially for
larger batch sizes. This cannot be verified for classification on respective test
sets. Also, batch normalization approximately doubled needed training time.
Therefore no batch normalization layers are included in the network architec-
ture for further experiments and a small batch size of 32 examples is chosen.

Because the network consists of only few layers compared to classical deep
nets for large scale image processing and data is standardized during prepro-
cessing, batch normalization might promote overfitting. As discussed earlier,
validation and training set are quite similar, hence validation accuracy increases
while test performance suffers from using this method.

Figure 28: Validation set results comparing different batch sizes & normalization. Best results
are found using the regularization method and bigger batches. However, this could not be
transfered to results on the test sets. Therefore, no batch normalization and a batch size of 32 is
chosen for further proceeding.
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Dropout rate A dropout rate of 50 % as well as no dropout are options con-
sidered in this project. Validation results, shown in Figure 29, are insufficient
to clarify whether this regularization method is helpful or not. BACC on the
test set did not improve consistently over all session or subject transfer cases.
Therefore, dropout is not further used throughout the project.

(Shamwell et al., 2016) use a dropout rate of 50 % for both fully connected
ReLU layers. However, they use a greater number of subjects for training and
500 nodes per layer instead of 250.

L2 regularization Out of all tested values for the L2 penalization weight, 1e-
03 is the only option with somehow comparable validation accuracy scores to
results achieved in the absence of this regularization method. Figure 30 shows
the validation accuracy for both cases. For clarification, this weight decay
was also evaluated on a test set. Because no relevant improvement is induced
through this method, it is not further considered in this project.

In order to better understand the effect of L2 on this use case, a more detailed
weight analysis is needed. However, this is not part of this project but is a
relevant factor for a possible following study to examine created features and
their impact on decision making in detail.

Kernel constraints Instead of weight decay, this regularization method forces
all weights to have a certain mean value. On the validation set results for a kernel
constraint of 0.05 are promising. However, BACC on the test declined when the
constraint is applied. Therefore, kernel constraint is not further considered in
this project. It might also be that weights have a mean around 0.05 even without
the regularization.
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Figure 29: The validation results for a dropout rate of 50 % show no relevant improvement
compared to no dropout.

Figure 30: The validation results for L2 regularization show no relevant improvement compared
to no regularization.
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Figure 31: The validation results for a kernel constraint forcing the mean weights around 0.05
seem promising. However BACC on the test declined when the constraint is applied.

Trainable Parameters As explained in Section 3.4, stride and filter size of
the initial two layers is subject to scaling. After all hyperparameters are set,
the number of trainable parameters for the ConvNet is only depending on
the input dimension of training data. Table 7 shows the resulting number of
automatically adjusted weights for all considered sampling rates. Compared
to classical ConvNets for large scale image classification, such as the network
from Krizhevsky et al. (2012) (approx. 61 M parameters in 16 layers), the used
architecture in this project is shallow and the maximum number of 5,105,043
trainable parameters is relatively small. However, compared to other ConvNets
applied to EEG data listed by Schirrmeister et al. (2017) this network has a
mediocre size.

Table 7: The number of trainable ConvNet parameters depending on the data input dimension.

Sampling rate [Hz] Trainable ConvNet parameters
1000 4,938,003
250 4,918,803
25 5,105,043
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4.2 Session Transfer

Session transfer results are verified by 10 runs for each case. Figure 32 shows
the BACC for all nine cases, with and without augmented data. Data augmen-
tation is able to increase performance in all cases. However, as the amount of
training data is increased, needed learning time rises by approximately the same
factor, as shown in Figure 33. In general, classification works well, regardless of
considered preprocessing with mean BACCs ranging from 85.10 to 86.59. The
SVM baseline achieved a mean BACC of 80.52 on the same data, but witout
augmentation. Comparing results averaged over all sessions does not clarify
which case is considered optimal. Therefore, needed training time, AUC and
TPR are used to differentiate better.

Figure 33 shows that processing data with a 1000 Hz sampling rate results in
longer training than for 250 Hz. Reducing the temporal dimension to 25 Hz does
not speed up training any further. The SVM shows a mean training time of
198.86 ± 28.82 s without data augmentation, but because training is carried out
on CPUs not GPUs, values are not easily comparable. Data dimension showed
no effect on the average classification time whatsoever.

Figure 32: Total balanced accuracies for all cases with augmented (yellow) and non-augmented
(blue) data. Using augmented training data improves performance. The ANN is able to classify
test EEG data comparably well, independently of prior processing.
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Figure 33: Needed training time increases for augmented data at approximately the same factor
(5) that data is increased by. Average times do not include augmentation process itself. Also,
training data with a sampling rate of 1000 Hz slows down training as compared to 250 or 25 Hz.

Figure 34 shows that different preprocessing affects the AUC of the classifica-
tion algorithm and it is easier to distinguish an optimal case than for comparison
of BACC in Figure 32. Case 4 appears to be most suitable for DL with highest
meadian, mean, absolute low and high in measured values. A visible trend
is, that for decreasing contained frequencies within data of any sampling rate,
performance declines. Also, classification results of test data with a 1000 Hz sam-
pling rate are worse than for 25 Hz. Best results are obtained with a temporal
dimension of 250 Hz as proposed by Shamwell et al. (2016). However, applying
a bandpass filter to the EEG data seems to dampen performance, although the
frequency range above 50 Hz, not contained in cases 2 and 5 compared to 1 and
4 respectively are not considered to include valuable ERP information by Luck
(2014). This decrease may be explained through artifacts induced by the filter,
defiling remaining information. While in case 5 EEG data contains the sub-δ
band, this is filtered out in case 6, resulting in a difference in performance. Fig-
ure 35 shows the same results for cases 1, 4, 6 and 9 split for every tested session.
The variance for a specific session is much smaller than over all sessions, but
differences in results emerging from different subjects explains this aspect. Case
4 proves to be best suitable for almost every tested scenario.
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Figure 34: Case comparison & classification performance via AUC. Median values (red lines)
are all greater than 0.9 and vary only within 2 %. In general, decreasing included frequency
bands affects classification in a negative matter. Best results are obtained for case 4 and lowest
for case 3.

Figure 35: Classification performance for cases 1 (raw), 4 (best), 6 (baseline Shamwell et al.
(2016)) and 9 (baseline Kirchner et al. (2016a)). Data of different subjects is learned and classified
differentially well, leading to a great variance of results in overall case comparison.
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Table 8 summarizes obtained results for session transfer and case comparison
as well as SVM baseline. Case 4 emerged best AUC and BACC values, although
all mean DL results are within the standard deviation of the other cases.

Although case 9 shows the worst AUC and BACC, except the SVM, it has
the highest TPR. This means that P300 was correctly identified most often with
greatest data reduction. However, it also has the lowest TNR, so the trained
classification algorithms tend to recognize P300 even when not present. This
may be helpful in some specific use cases where missing a target is more critical
than a false identification.

The SVM baseline was outperformed by DL in all tested cases. It shows worst
mean results and highest standard deviation for all metrics. However, the differ-
ence in BACC is only about 5 %. This baseline is a very simple version of an SVM
classification and there are various more complex versions available. Also, test
accuracy reportedly increases when training is performed with augmented data
as well (Krell and Kim, 2017). In general DL and SVM can both be considered
reasonable approaches for EEG data classification in a session transfer scenario.

Table 8: Summarized results for session transfer comparing all augmented preprocessing cases
and SVM baseline. Best results are marked bold.

AUC [%] BACC [%] TPR [%] TNR [%]
Case # mean ± std mean ± std mean ± std mean ± std

1 91.22 2.73 86.56 2.97 83.29 6.09 89.83 4.38
2 90.77 2.95 86.00 3.64 79.80 7.67 92.19 3.16
3 89.17 3.51 85.27 3.89 82.28 5.87 88.25 7.22
4 92.37 2.56 86.59 3.05 82.02 6.31 91.16 4.25
5 91.94 2.81 86.28 3.47 81.74 6.85 90.82 4.17
6 91.36 2.84 85.97 3.54 80.17 7.47 91.78 3.48
7 91.41 3.01 85.75 3.74 81.68 7.53 89.83 5.21
8 91.18 3.16 85.59 4.13 82.85 8.24 88.33 6.92
9 90.56 3.61 85.10 4.45 83.85 7.43 86.35 8.60

SVM 88.80 4.61 80.52 6.01 74.75 9.01 86.29 12.61
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4.3 Subject Transfer

Subject transfer results are verified by 5 runs for each case. Figure 36 shows the
BACC for classification on all six datasets with and without data augmentation
for preprocessing case 4. In this scenario augmented training data did not in-
crease performance. Therefore, following results are based on models that have
not been trained with augmented data.

It may be that training sets include too much data with an average of 49,133
examples (9,827 without augmentation), compared to the capability of the ANN.
A possible bottleneck for this is the number of nodes within the fully connected
layers. Ideally each node of the last hidden layer represents a specific feature (or
set of combined features) on learned data and its activation can be interpreted as
the absence or presence of respective feature. When there are more key features
to be learned than active nodes available, this can limit the classification perfor-
mance. While the applied network only contains 250 nodes per fully connected
layer, Shamwell et al. (2016) propose 500 nodes for a subject transfer scenario,
but do not state the number of used training examples. However, empirical
testing showed that increasing the number of nodes to 500 per layer further de-
creased classification performance. Therefore, the bottleneck limiting the ideal
number of training examples is believed to be somewhere else within the net-
work. Further investigations are needed to locate the relevant parameter and
eventually automatically scale it to the number of available training examples,
if procurable.

The results for case 1, 4 and 9 are shown in Figure 37. Again performance is
similar for all cases, but case 4 achieved best mean BACC and AUC. For subject
transfer results are expectedly worse than for session transfer. However, it is
remarkable that balanced accuracies of nearly 90 % are obtained for the best
setup (Rest vs. Sub 3). The mean BACC of case 4 is only 4.24 % below session
transfer. This is a strong indication that DL is an appropriate tool to learn sub-
ject independent features. If applied to a dataset containing more subjects this
could lead to a more general representation of desired ERPs, also improving
performance on test data that are harder to classify correctly, such as subject 4
and 5.
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Figure 36: Data augmentation did not improve performance in a subject transfer scenario tested
on case 4. It is believed that this is due to the great amount of training examples for the relatively
small network.

Figure 37: Subject transfer classification performance comparing cases 1, 4 & 9. Subject specific
performance corresponds closely to the results of session transfer.
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Table 9 summarizes the mean classification scores and standard deviation for
subject transfer of the ConvNet and SVM. Results of the baseline are reduced
intensively compared to session transfer. While AUC and BACC decrease for
25.33 and 20.19 % respectively, the TPR is at approximately the guessing rate of
50 % for binary classification. Shamwell et al. (2016) report an AUC of 72 % of
their ConvNet for subject transfer, while training and testing occurs on data of
9 subjects each.

Table 9: Summarized results for subject transfer comparing preprocessing cases 1, 4 & 9 as well
as SVM & ConvNet baseline. However, AUC from baseline is reported Shamwell et al. (2016)
and is achieved on a different dataset. Best results are marked bold.

AUC [%] BACC [%] TPR [%] TNR [%]
Case # mean ± std mean ± std mean ± std mean ± std

1 86.37 4.75 81.94 5.37 76.07 11.44 87.82 3.81
4 88.31 4.99 82.35 5.82 76.14 12.19 88.57 3.66
9 86.41 5.75 81.02 5.88 75.05 10.74 86.99 2.02

SVM 63.47 10.23 60.33 8.06 52,31 16,31 68,35 4,69
ConvNet 72.00 - - - - - - -

4.4 Conclusion

Section lists 1.2 four key questions which are ought to be answered throughout
this project:

1. Is the DL approach appropriate for (DFKI) P300 EEG data classification?
Good results show that DL is an appropriate method for EEG data classifica-
tion. While using biologically inspired methods from image processing, created
ConvNet is comparably shallow and therefore does not rely on regularization
methods to improve performance.

2. How much of the classical preprocessing and data reduction is necessary?
Classification performance is surprisingly similar for raw and heavily reduced
data. Using raw data for training increases the needed training time. However,
best classification is found for EEG data with a sampling–rate of 250 Hz contain-
ing high frequencies. This outcome is the same for session and subject transfer.
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3. Can achieved results outperform existing processing pipelines on the same data?
In both cases compared baselines are outperformed significantly. Especially for
subject transfer the difference in BACC are tremendous. This does not generally
prove that DL is the best approach for EEG data processing, but it emphasizes
the state of the art position for automated multi–dimensional data classification
in general.

4. Can subject independent features be found?
ConvNet results for subject transfer are almost as good as the outcome of session
transfer. This strongly implies that subject independent features have been
generated. However, the differences between applied preprocessing cases are
similar for both scenarios. And although compared to lower frequency ranges
a significant improvement in classification is measured, it cannot be assumed
that higher frequency bands contain more subject independent features than
low frequencies.

Being able to give satisfactory answers to the primarily stated questions leads
to the overall conclusion that this project can be considered successful.

4.5 Outlook

To be able to comprehend where subject independent features can be found,
a detailed analysis of automatically generated featuremaps, respective weights
and input dependent activations is necessary. Tools for this kind of analysis
are becoming more and more present throughout relevant literature and should
be considered for a follow–up study. Also, this ConvNet could be applied to
other EEG datasets in order to identify a different type of ERP, such as LRP, and
differentiate between multiple classes.

For further improvement of this or similar algorithms, more EEG data is most
crucial. If at some point a very general model of desired ERPs can be created
and subject transfer classification results are as good as session transfer, training
of individual persons becomes obsolete for many BCI–based applications.

Steadily increasing computational power of available technologies will play
a key role in the development of the approached topic. With improved hard-
ware, complex algorithms can process more data in less time. Furthermore, cost
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and size reduced design of future hardware will enable the usage of embedded
brain reading on an industrial, but also personal level. With smaller chips, faster
cores and stronger algorithms the ability to in a way ”read peoples minds” may
become closer than mankind has only dreamed about for centuries. It can not be
completely grasped just yet where this path will lead and what opportunities,
but also dangers lie within this ideas great potential.

This thesis may not have brought revolutionary knowledge or broadly unex-
pected results, but it supports the greater, overall idea of subject independent
BCIs. Using a, in various ways, biologically inspired classification algorithm
to enhance a preexisting signal processing chain has shown to be promising
once again in this proof of concept study. The past century has widened our
understanding of the central nervous system in a revolutionary matter. With
novel technologies and steadily working research groups, insight will further
extend and help to reveal greater scale functionality of the human brain. It is
out of question that the abstraction from a biological phenomenon to a technical
solution, called biomimicry, will continue to profit from this development and
vice versa.
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Appendix
Statistical Evaluation

The following statistical evaluation was performed with major help by Dr.
Su–Kyoung Kim. It can not be considered completely self–developed and is
therefore listed in this appendix Section.
For session transfer, 9 different preprocessing conditions (ConvNet) and one
baseline (SVM) are statistically evaluated. To this end, a one–way repeated
measures ANOVA is performed with case (10 levels: 9 different preprocessing
conditions using ConvNet and one preprocessing condition using SVM) as a
subject–within factor (details for 10 cases, see Table 3). For multiple compar-
isons, Bonferroni correction is applied. Each condition has the sample size of
120 (6 subjects * 2 sessions * 10 validations).

There is a significant difference between 10 conditions (main effect of case
[F(9, 1071) = 99.03, p < 0.001]). The worst classification performance is obtained
when the SVM is used for P300 classification [p < 0.001 for SVM vs. all com-
parison pairs]. The best classification performance is achieved when no filter
is used with sampling–rate of 250 Hz (Case 4) or when the data was bandpass
filtered between 0 and 50 Hz with the same sampling–rate (Case 5) [Case 4 vs.
Case 1, Case 4 vs. Case 2, Case 4 vs. Case 5: n.s., otherwise: p < 0.001, Case 5
vs. Case 1, Case 5 vs. Case 2, Case 5 vs. Case 6: n.s., otherwise: p < 0.001]. The
results indicate that the classification performance is superior when the data
contains high frequencies (up to 50 Hz or more than 50 Hz) compared to the data
containing only a low frequency (up to 4 Hz).

For subject transfer, a Wilcoxen sign–rank test is performed to compare three
different preprocessing conditions (ConvNet) and one baseline (SVM). Each
condition has the sample size of 6 (6 subjects averaged over 5 validations). The
worst performance is obtained when SVM is applied for classification [baseline
vs. all comparison pairs: p < 0.001]. Again, the data containing high frequencies
showed better classification performance compared to the data containing low
frequencies [Case 1 vs. Case 9: p < 0.043]. There is no differences between the
data containing high frequencies with different decimation [Case 1 vs. Case 4:
n.s.].
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