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Towards predicting cognitive profiles in MS: A translational approach on 

network dynamics in fMRI data 

OBJECTIVE: Here we expand the properties of resting state fMRI data beyond widely used network 

correlations to predict cognitive deficits. This was done to investigate if the experience gained in stock 

markets can be translated to obtain more insight into biological processes due to a high number of 

temporal similarities. This is towards gaining a better understanding for MS patients’ individual 

cognitive development profile. 

METHODS: Brain network timeseries were obtained by a data-driven approach using ICA-FIX, melodic 

and dual regression within the FSL 5 software. Properties of timeseries were obtained by calculating 

time series indicators derived from stock markets for a wide range of timescales. These properties are 

used as features in regression models, allowing comparison with a baseline model, based on the 

respective Pearson’s correlation coefficient of predicted and true average cognition scores. 

RESULTS: Robust predictors are found by cross-validated recursive feature elimination and ridge 

regression models. Results indicate that these predictors can outperform a traditional correlation-

based model on the same data. Although group differences for all predictors are non-significant, some 

indicators show potential as biomarkers to identify cognitive deficits based on fMRI data.  

CONCLUSIONS: Robust stock market indicator-based features are believed to be able to grant new 

insights in mechanisms in brain networks dynamics leading to cognitive deficits. The heterogeneity of 

cognitive ability and affected domains within the present dataset do not allow for predicting complete 

and individual cognitive profiles. Larger studies are necessary to further interpret and validate time-

series indicators in fMRI. 

Keywords: Multiple sclerosis, functional magnet resonance imaging, dynamic functional connectivity, 

brain networks, cognition, time series analysis, machine learning, sliding window 

Introduction 
Multiple sclerosis (MS) is heterogeneous in symptoms and progression, with 40 – 70% of affected 

patients suffering from some sort of cognitive deficits1,2, potentially starting early in disease3. Given 

the current lack of effective treatments4 and biomarkers,5 it is important to work towards preventative 

measures rather than symptomatic treatments, to minimize the impact on the patients' daily life. Early 

and individual treatment, based on the respective cognitive profile of affected subjects, is desired to 

prevent progression of cognitive deficits as they get increasingly irreversible over disease progression. 

Structural imaging techniques, such as magnet resonance imaging (MRI - traditionally used to detect 

lesion location and size6) or diffusion tensor imaging (to identify what white matter tracks are affected 

by found lesions) fail to explain severity or affected domain of cognitive deficits reliably.7  While grey 

matter atrophy can be easily linked to compromised function of the corresponding cortex region, the 

often occurring white matter lesions are hard to link with an affected cognitive domain8. To create 

disease models explaining these, fMRI studies have investigated the correlation of brain network 

activity, especially with the default mode network9,10 (DMN), or graph-theory based measures.11 

Understanding on what timescale relevant mechanisms occur is important when considering the 

dynamic properties of network activies.12–15 Contradictory findings associate cognitive deficits with 

both increased and decreased (dynamic) functional connectivity (FC) of specific networks9, highlighting 
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the need to expand the horizon of temporal properties investigated. However, statistical time series 

analysis is not limited to the biomedical sciences, with such data also used in financial markets.16 

Similarities are evident between temporal brain network activity and stock prices, such as wave-like 

oscillations on multiple overlaying timescales, reaction to external stimulation and non-independent 

course development of related areas. 

Therefore, to predict cognitive disfunction, this work considers network activity correlations 

(functional connectivity measures) and additional dynamic properties of resting state (RS) fMRI data. 

Statistical values inspired by stock indices are translated for data-driven RS network timeseries and 

given the timescale for relevant properties is unknown12–14, a range of temporal windows is covered. 

This work explores a translational approach to detecting and understanding underlying mechanisms 

occurring with cognitive deficits. This proof-of-concept is focused on cross-sectional prediction of 

average cognitive abilities, aiming to evaluate if new predictors can perform similarly to a traditional 

network-correlation based baseline regression model. Careful interpretation of the most important 

indicators could lead to insights on mechanisms that lead to specific cognitive deficits and enable the 

creation of individual cognitive profiles for MS patients. 

Methods 
Participants. All participants were part of the Amsterdam MS cohort, as previously described17, 

consisting of 234 patients diagnosed with clinically definite MS according to the revised McDonald 

criteria18 (MS; 32 % male, age 47.61 ± 11.02 years, symptom duration 14.6 ± 8.4) and 60 matched 

healthy controls (HC; 42 % male, age 46.45 ± 9.91 years). Of the patients with MS, 181 patients were 

diagnosed with relapsing remitting MS, 33 patients with secondary progressive MS, and 20 with 

primary progressive MS. All patients were relapse-free and without steroid treatment for at least two 

months prior to participation in the study 

Standard protocol approvals, registrations, and patient consents. The study protocol was approved 

by the Vrije Universiteit Medical Center ethics review board, and all participants gave written informed 

consent before participation. 

Neuropsychological testing. On the day of fMRI scanning, all participants underwent extensive 

neuropsychological testing with an extended version of the Brief Repeatable Battery of 

Neuropsychological tests (BRB-N)19 as previously described.10,17,20,21 The assessed cognitive domains 

include: Executive functioning (concept shifting test), verbal memory (selective reminding test), verbal 

fluency (word list generation), information processing speed (symbol digit modalities test), visuospatial 

memory (spatial recall test), attention (Stroop color-word test) and working memory (memory 

comparison test), as well as an average cognition composite score. The test scores were corrected for 

effects of age, sex and education, as well as standardized, based on the HC observations.22 Only 

subjects without missing scores were included for prediction of the average cognition score.  

MRI scans. All subjects were scanned on a 3T General Electric system (Signa-HDxt, Milwaukee, WI, 

USA), utilizing an eight-channel phased-array head coil, as previously described.10,17,20,21 3D T1-

weighted images were used for registration, using fast spoiled gradient echo sequence (repetition time 

7.8ms, echo time 3ms, inversion time 450ms, flip angle 12°, 1.0mm sagittal slices, 0.9 × 0.9mm² in-

plane resolution). Functional MRI data covering the whole brain was obtained by acquiring echo planar 

images (202 volumes, repetition time 2200ms, echo time 35ms, flip angle 80°, 3mm contiguous axial 

slices, 3.3 × 3.3mm² in-plane resolution) with eyes closed.  
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Image preprocessing. The preprocessing pipeline followed was previously described in detail23 and 

included: fMRI image registration to the 3D T1-weighted images, brain extraction, motion correction 

(ICA-FIX)24,25, spatial smoothening and removal of first two volumes, slow temporal drifts as well as 

other artifacts. This results in voxel activation series (200 timepoints each) within standard space for 

comparability between subjects with improved signal-to-noise ratio. 

Extraction of resting-state networks. Independent component analysis was used to extract the spatial 

patterns from all subjects and resulted in 50 components, of which 14 were manually chosen for 

further analysis, which were identified and labeled as the following: Auditory, Cerebellum a, 

Cerebellum b, DMN I, DMN II, Executive control, Frontoparietal network (FPN) I, FPN II a, FPN II b, 

Sensorimotor, Visual a, Visual b, Visual c & Visual d, shown in Figure 1. Activation time series were 

obtained per subject using the previously described dual regression protocol within FSL 5.24,25 

Obtaining statistical timeseries indicators. For the signal timeseries (S(t)) of each network of every 

subject several timescale dependent indicators were calculated using a specifically developed script in 

python 2.7 (https://www.python.org/). Time windows (∆𝑡) for the rolling parameters varied between 

5 and 100 timepoints (n) (11 – 220s). For every timepoint 𝑡𝑖, several statistical properties of S are 

obtained (for a detailed list of indicators and applied time windows see Table 1). Because indicators 

have variable initialization lengths, only their last 100 timepoints were used for further analysis. Single 

values for the predictive model were obtained for each subject, network and indicator by calculating 

the following measures: Mean, standard deviation, minimum, 25% quantile, median, 75% quantile, 

maximum, range, skewness & kurtosis. This resulted in a total of 47320 single value features as 

potential predictors for cognition per subject. This includes both sides (mirrored triangles) of the 

correlation matrix, but excludes correlations of networks with themselves (always 1.0). To counter the 

bias of regularization in regression models towards larger absolute values, all features were 

standardized by subtracting their mean value over all included subjects and then dividing them by the 

respective standard deviation. To get a first instance if indicators may be suitable predictors for a linear 

regression model, their correlation with subjects’ average cognition scores were visualized. 

Additionally, to check if any indicators vary significantly in their group means (MS vs HC) to act as 

potential biomarkers, independent t-tests (α = 0.05) were conducted. 

Cognitive score prediction. To detect the most important predictors for average cognition, Ridge 

regression was used to create predictive models that minimize the sum of the squared prediction error 

as well as the sum of the squared coefficient weights by L2 regularization.26 This technique leads to 

better generalizability of the model for unseen data and its dominance can be adjusted by the 

hyperparameter α. An increasing α shifts the penalty from bias to variance, which is utilized to 

minimize overfitting compared to ordinary least squares (OLS) regression.27 Furthermore, this allows 

to handle data with higher multicollinearity, because two identical features are assigned similar 

weights in the linear model.28 Performance of ridge regression in similar problems is comparable to 

other methods while having relatively low computational costs and being easy to tune.29 

Individualized prediction framework. To ensure that every subjects’ cognitive scores are predicted 

exactly once for every tested condition, included subjects are divided into five sets randomly. Model 

generation and subsequent score prediction is repeated five times. For each of the repetitions, four 

sets of subjects are combined to create and tune the model and the remaining set is used to validate 

it afterwards. Therefore, 5-fold cross validation (5F-CV) is applied to an outer and inner loop, with the 

outer 5F-CV loop estimating the generalizability of the model and the inner 5F-CV loop determining 
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the optimal parameter α between [2-2, 2-1, …, 210]. A schematic overview of the prediction framework 

is shown in Figure 2.  

Model comparison. To check if the introduced indicators add value to a predictive model, performance 

is compared to a classic network correlation-based baseline model (CORR indicators only). To quantify 

the overall model performances, the Pearson correlation coefficient between predicted cognitive 

scores and the true counterparts is calculated, as done in similar studies.29 This is done for each 

validation fold, as they are independent models with similar conditions and then averaged (𝑟𝑚𝑒𝑎𝑛  ± 

𝑟𝑠𝑡𝑑) and for all predicted values (𝑟𝑡𝑜𝑡𝑎𝑙). The analysis is done separately for three groups (all subjects, 

HC and MS). 

Finding the most robust indicators / predictors. There are various methods for creating a set of robust 

predictors for any given cognitive score, each coming with different advantages and disadvantages. 

Usually, all left predictors are made available for the model to be based on, but with the number of 

features greatly exceeding the number of examples, overfitting is hard to avoid. Another option is to 

eliminate the features from a full set recursively (α between [102, 103, …, 107]), which comes at a great 

computational cost and does not automatically lead to a small or ideal set of robust predictors. This 

utilizes knowledge about the outcome variable of the prediction in the model building process and 

thereby makes results less comparable with similar experiments. However, here it is used as having a 

predictive model is secondary to investigating a subset of robust predictors in order to interpret its 

properties. Lastly, the top ten features based on their importance order from the recursive feature 

elimination are used to generate a model with reasonable complexity to predict cognitive scores. 

Comparing (pre-)selected predictors and associated weights within a model for any cognitive domain 

or group of subjects may grant insight in what quantified mechanism by respective predictors is specific 

for a clinical phenotype. 

Created models. The previously described methods are applied to all subjects, patients only and 

healthy controls only. For each group, a baseline model (CORR indicators only), a full model (including 

all introduced indicators), a minimal model (using recursive feature elimination) and a model 

containing exactly 10 features (based on their feature importance) were created. When the full model 

performance exceeds the baseline model performance, this indicates added predictive value by the 

introduced stock market indicators. The minimal models (after feature elimination) were used to 

quantify the robustness of selected features. The top ten model are examples to give an indication of 

predictive performance a reasonable complexity, desired for real-world applications. 

Results 
Indicators correlate with cognition scores. Visual inspection of the data shows that indicator 

descriptives and subjects average cognition scores are partially correlated, where examples are shown 

in Figure 3. While some network correlation mean values show higher correlations with the average 

cognition scores than other mean indicators, their kurtosis correlates much weaker than those of e.g. 

BB, CCI or RSI-based indicators. Similar variation and comparably high correlations are found for other 

descriptives as well as for cognitive scores from specific domains (data not shown). The gradient of 

correlation intensity within a single indicator-network-combination displays the variation over 

different time windows from short (left) to long (right). In some indicator-network-combinations, a 

clear trend is visible, with either shorter (blue box) or longer windows (green box) steadily increasing 

the found correlation with the outcome variable. Interestingly, these local maxima of correlation do 

not all converge at a single temporal scale, understating the importance and controversy of this 
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parameter. These found linear correlations are a first instance, that some indicators may be suitable 

predictors for a linear regression model. 

Group difference between indicators. Although this study has a clear individual focus, looking at group 

differences can sometimes give valuable information on macroscopic mechanisms, especially when 

trying to find features which discriminate between affected and unaffected subjects (potential 

biomarkers). Feature-cognition correlation for HC and MS individually, shows very different patterns 

(data not shown). In general, the correlation between the indicators descriptives and average cognition 

is stronger within HC than in MS. This is quantified in Figure 4, showing the significance values of 

independent t-tests comparing group means for all indicator descriptives seperately. No significant 

differences between group means are found. Figure 5 shows a selection of indicator descriptives versus 

average cognition scores. Some features show similar correlations for both groups (e.g. A), while others 

show group specific trendlines (e.g. E). The highlighted indices of Figure 4, with the largest mean 

differences between HC (blue) and MS (red), are shown in Figure 5 F - I. Here it becomes visible that 

the distribution of cognition scores for MS patients are more widespread and generally lower 

compared to HC, which partially explains the finding that in the latter generally higher correlations 

occur. The highest correlations, positive and negative, between cognitive score and features for all 

subjects (r = 0.36 & -0.38), MS (r = 0.36 & -0.36) and HC (r = 0.53 & -0.61) are shown in A – E.  

Robust features successfully predict cognitive scores. Figure 6 and Table 2 summarize the results of 

the predictive models. The baseline models with 18200 predictors shows lower performance than the 

respective models using all possible 47320 features for all subjects, MS and HC. No reliable baseline 

model for HC are generated under the tested conditions. The minimal models, established by recursive 

feature elimination, reduced the model complexity drastically while increasing predictive accuracy. 

Using the top ten predictors resulted in the best models compared in this study. Excluding the baseline, 

predicting cognitive scores of HC is more reliable than for MS or all subjects. Figure 7 visualizes two 

examples of the most important feature to predict all cognitive scores, the kurtosis of the RSI 90 based 

on the FPN II B activation signal, also found with the strongest correlation with the average cognition 

score (figure 5 A). The RSI 90 almost normalizes the signal based on the 90 most recent datapoints. 

The data for the HC subject (A - highest average cognition score) shows a more even feature value 

distribution than the MS subject (B - lowest average cognition score). However, due to two outliers in 

network activity of subject B the absolute covered value range is greater.  

Discussion 
When studying FC in the human brain, giving attention to temporal dynamics shows a promising 

approach to better understand cognition in HC and MS.14,15 Common methodology is focused on 

network coactivation, eventually leading to FC states and their patterns of alternation. However, this 

does only indirectly explore activation patterns within single networks. It may be helpful to investigate 

such and potentially be able to link specific dynamic network activation pattern properties with 

cognitive disfunction, ideally with specific cognitive domains. Using the Amsterdam MS RS-fMRI 

dataset, the present study compared traditional network correlation-based features with new stock-

index, single-network based features to predict average cognition scores. Results indicate that this 

translational approach can outperform baseline models on the same data. The found correlations of 

true and predicted cognitive scores are comparable to similar recent studies.29 

Results for prediction are strongly dependent on the number of available datapoints. The large number 

of predictors increase the risk of overfitting to the respective train set. Both previous statements can 
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explain the poor prediction for only 54 HC subjects in the complete model. For minimal model 

complexity, the relatively higher scores for HC subjects can be explained by the more normally 

distributed cognitive abilities of this group. The patients with lower cognitive scores skew the cognition 

score distribution and evoke a bias in the machine learning algorithm towards the upper end of the 

spectrum, hence resulting in poorer predictive certainty on the less well represented affected subjects. 

One way to tackle this bias would be reducing the number of included subjects in such a way that 

present scores from training examples are always near equal distribution. However, this stands in 

direct conflict with the desire to increase the total number of included subjects to gain a more robust 

prediction and creates a tradeoff between these two biases. 

The search for robust features via recursive feature elimination based on ridge regression with a fixed 

alpha value is suboptimal, because the necessity of regularization scales with the number of available 

predictors. For this task either a stepwise reduction of features with a predefined alpha value for each 

step, or a dynamic regularization parameter is desired, but both lie outside the scope of this project.  

Interpretability of the predictors given most weight in the regression models is limited. This is due to 

the noisy data leading to large heterogeneity of affected cognitive domains throughout the subjects. 

The examples for the kurtosis of RSI 90 based on the FPN II b network in figure 7 is showing extreme 

values and is not representative for the entire cohort, as clearly visible in figure 5 A. Therefore, further 

analysis is desired to predict cognitive scores of all available domains on subsets of features grouped 

by the networks they are based on. This has the potential to tackle problems of suboptimal feature to 

sample ratio and establish a more direct link between specific network activity and domain of cognitive 

deficits. 

Analyzing domain specific cognitive deficits and establishing robust features on the present dataset is 

difficult, because of the large heterogeneity of the clinical phenotypes present. Dividing the cohort 

into groups based on affected cognitive domain leaves not enough subjects for a robust analysis, and 

using the entire dataset induces a strong bias towards learning and predicting scores of the larger 

unaffected group for each domain respectively. A compromised approach could include subject 

classification instead of regression based on an arbitrary threshold in cognitive performance (typically 

at 2 z-scores below the overall mean). However, this drawback needs to be overcome to truly achieve 

robust prediction of complete individual cognitive profiles.  

This study is primarily limited by the size of the available dataset and the high variance of cognitive 

scores across various cognitive domains. The fact that the dataset is based on RS-fMRI is 

unproblematic, as network activity found in the resting brain is also meaningful in tasks.30 Optimal 

features for this cohort are to be validated on an independent dataset to estimate and minimize the 

effect of overfitting. Generally, the potential of this and similar projects is strongly limited by the size 

of available datasets. Ideally, large, open-source datasets are desirable to increase statistical power 

and comparability in benchmark tests. Recent advances in this direction, e.g. the OpenfMRI project 

(openfmri.org/dataset) or the UK Biobank (fmrib.ox.ac.uk/ukbiobank) will help to tackle these 

common problems of the field in the future. 

Concluding result interpretation, a longitudinal study on larger, independent datasets, and utilizing 

features similar to the ones presented in this study are likely to enhance the understanding of the 

connection between temporal brain network activity patterns and clinical phenotypes in MS. It is not 

unlikely that a sophisticated methodology will help as a pre-diagnostic tool in clinical screenings to 

create cognitive profiles for individuals with risk for developing cognitive deficits, not limited to MS. 
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Figure 1: The 14 data-driven networks elicited by dual regression and melodic to provide their 

activation signals for this study. 
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Figure 2: Schematic overview of the developed prediction framework for feature (sub-)set 

validation. The shown wrapper function consisting of an inner cross-validation, used to tune the 

hyperparameter alpha of the ridge regression algorithm, and an outer cross-validation to predict 

cognitive scores of the subjects and test the generalizability of the model. The process is repeated five 

times, so every subject has been part of the validation group exactly once.  
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Figure 3: Absolute correlation of selected features of all subjects with their average cognition score. 

While some mean network correlations show higher correlations (Pearson’s correlation coefficient) 

with the cognitive scores than other mean indicators, their kurtosis correlates much weaker than those 

of e.g. BB, CCI or RSI-based indicators. The gradient of correlation intensity within a single indicator-

network-combination displays the variation over different time windows from short (left) to long 

(right). In some cases, a clear trend is visible, with either shorter (blue) or longer (green) windows 

steadily increasing the found correlation with the outcome variable.   
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Figure 4: Manhattan plot for group differences of all 47320 predictors. Due to multiple comparisons, 

the significant p-value is set to 1.1E-06 by Bonferroni correction. No predictors show significantly 

different mean values between patients and healthy controls (independent t-test, alpha = 0.05), but 

four RSI-based candidates are highlighted. Such group differences are potential non-invasive 

biomarkers for MS and therefore ought to be investigated further.  



Justus F. Hübotter 

14 
 

Figure 5: Scatterplots of average cognition over selected features. Only subjects with complete test 

score profiles are included (N = 267; 54 HC). HC: blue, MS: red, all: green, group means: dotted lines, 

correlations: solid lines. The mean cognitive score of the patients is approximately one standard 

deviation below the mean of HC. The highest correlations, positive and negative, between cognitive 

score and index descriptive (features) for all subjects (A & B), MS (A & C) and HC (D & E). Features 

based on bound indices such as the RSI show an accumulation of examples at extreme values, as shown 

in C. Some features show similar correlations for both groups (e.g. A), while other show group specific 

trendlines (e.g. E). The highlighted indices of figure 4 with the largest mean differences between HC 

(blue) and MS (red) are shown in F, G, H & I. 
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Figure 6: Predicted over true average cognition scores for all subjects, MS and HC. Predictive 

performance increases from top (baseline) to bottom (top 10 predictors from recursive feature 

elimination). Identity line in red.  
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Figure 7: Examples of standardized signal and RSI 90 of FPN II b. A) HC subject with the highest average 

cognition score; B) MS subject with the lowest average cognition score. The RSI 90 follows the signal 

curve closely. Subject B shows two extreme signal values diverging strongly from the network 

activation mean. Histograms of the RSI (right) show a platykurtic value distribution for subject A and a 

leptokurtic distribution for subject B. Although the absolute range for RSI 90 is greater for subject B 

than for subject A, most values are concentrated around the mean value.  
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Indicator [abbreviation] Equation Time windows ∆𝑡 (2.2 s each) 

Signal [𝑆] - unbound  

𝑆(𝑡𝑖) 

Pearson’s correlation coefficient [𝐶𝑂𝑅𝑅] - bound 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 

𝐶𝑂𝑅𝑅(𝑡𝑖 , ∆𝑡) =
∆𝑡 ∑ 𝑆(𝑡𝑖) 𝑆𝑛(𝑡𝑖) −

𝑡𝑖
𝑡𝑖−∆𝑡 [∑ 𝑆(𝑡𝑖)][

𝑡𝑖
𝑡𝑖−∆𝑡 ∑ 𝑆𝑛(𝑡𝑖)]

𝑡𝑖
𝑡𝑖−∆𝑡

√[∆𝑡 ∑ 𝑆(𝑡𝑖)
2𝑡𝑖

𝑡𝑖−∆𝑡
− (∑ 𝑆(𝑡𝑖))²][∆𝑡 ∑ 𝑆𝑛(𝑡𝑖)

2𝑡𝑖
𝑡𝑖−∆𝑡

− (∑ 𝑆𝑛(𝑡𝑖))²]
𝑡𝑖
𝑡𝑖−∆𝑡

𝑡𝑖
𝑡𝑖−∆𝑡

 

Simple moving average [𝑆𝑀𝐴] - unbound 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 

𝑆𝑀𝐴(𝑡𝑖, ∆𝑡) =
1

∆𝑡
∑ 𝑆(𝑡𝑖)

𝑡𝑖

𝑡𝑖−∆𝑡

 

SMA standard deviation [𝜎𝑆𝑀𝐴] - unbound 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 

𝜎𝑆𝑀𝐴(𝑡𝑖 , ∆𝑡) = √
∑ [SMA(𝑡𝑖, ∆𝑡) − SMA̅̅ ̅̅ ̅̅ (𝑡𝑖, ∆𝑡)]²

𝑡𝑖
𝑡𝑖−∆𝑡

∆𝑡
 

SMA of signal difference [𝐷𝐼𝐹] - unbound 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 

𝐷𝐼𝐹(𝑡𝑖 , ∆𝑡) =
1

∆𝑡
∑ 𝑆(𝑡𝑖) − 𝑆(𝑡𝑖−1)

𝑡𝑖

𝑡𝑖−∆𝑡

 

Exponential moving average [𝐸𝑀𝐴] - unbound 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 

𝐸𝑀𝐴(𝑡𝑖 , ∆𝑡) =
2𝑆𝑖(𝑡)

∆𝑡 + 1
+ 𝐸𝑀𝐴(𝑡𝑖−1, ∆𝑡) [1 −

2

∆𝑡 + 1
] 

Relative strength index [𝑅𝑆𝐼] – semi-bound 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 

𝑅𝑆𝐼(𝑡𝑖, ∆𝑡) = 100 −
100

1 +  
[

1
∆𝑡

∑ max(0, [𝑆(𝑡𝑖) − 𝑆(𝑡𝑖−1)])]
𝑡𝑖
𝑡𝑖−∆𝑡

[
1

∆𝑡
∑ min(0, [𝑆(𝑡𝑖) − 𝑆(𝑡𝑖−1)])]

𝑡𝑖
𝑡𝑖−∆𝑡

 

Commodity channel index [𝐶𝐶𝐼] – semi-bound 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 

𝐶𝐶𝐼(𝑡𝑖, ∆𝑡) =
S(𝑡𝑖) −  𝑆𝑀𝐴(𝑡𝑖 , ∆𝑡)

0.015 𝜎𝑆𝑀𝐴(𝑡𝑖 , ∆𝑡)
 

Bollinger bands upper border [𝐵𝐵𝑢𝑝𝑝𝑒𝑟] - unbound 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 

𝐵𝐵𝑢𝑝𝑝𝑒𝑟(𝑡𝑖, ∆𝑡) = 𝑆𝑀𝐴(𝑡𝑖 , ∆𝑡) + 2 𝜎𝑆𝑀𝐴(𝑡𝑖 , ∆𝑡) 

Bollinger bands lower border [𝐵𝐵𝑙𝑜𝑤𝑒𝑟] - unbound 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 

𝐵𝐵𝑙𝑜𝑤𝑒𝑟(𝑡𝑖 , ∆𝑡) = 𝑆𝑀𝐴(𝑡𝑖, ∆𝑡) − 2 𝜎𝑆𝑀𝐴(𝑡𝑖, ∆𝑡) 

 

Bollinger bands z-score [𝐵𝐵𝑧−𝑠𝑐𝑜𝑟𝑒] – semi-bound 

 

5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 

𝐵𝐵𝑧−𝑠𝑐𝑜𝑟𝑒(𝑡𝑖, ∆𝑡) =
𝑆(𝑡𝑖) − 𝐵𝐵𝑙𝑜𝑤𝑒𝑟(𝑡𝑖 , ∆𝑡)

𝐵𝐵𝑢𝑝𝑝𝑒𝑟(𝑡𝑖, ∆𝑡) − 𝐵𝐵𝑙𝑜𝑤𝑒𝑟(𝑡𝑖, ∆𝑡)
 

Stochastic oscillator [𝑆𝑇𝑂𝐶] – semi-bound 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 

𝑆𝑇𝑂𝐶(𝑡𝑖 , ∆𝑡) =
𝑆(𝑡𝑖) − min(𝑆(𝑡𝑖 − ∆𝑡), … , 𝑆(𝑡𝑖))

max(𝑆(𝑡𝑖−∆𝑡), … , 𝑆(𝑡𝑖)) − min(𝑆(𝑡𝑖−∆𝑡), … , 𝑆(𝑡𝑖−∆𝑡))
 

𝑆𝑇𝑂𝐶𝑠(𝑡𝑖, ∆𝑡) =  
1

3
∑ 𝑆𝑇𝑂𝐶(𝑡𝑖, ∆𝑡)

𝑡𝑖

𝑡𝑖−3

 

 

𝑆𝑇𝑂𝐶𝑠𝑠(𝑡𝑖, ∆𝑡) =  
1

3
∑ 𝑆𝑇𝑂𝐶𝑠(𝑡𝑖, ∆𝑡)

𝑡𝑖

𝑡𝑖−3
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Stochastic oscillator of RSI [𝑅𝑆𝐼 𝑆𝑇𝑂𝐶] – semi-bound RSI: 5, 10, 20, 30, 40 & STOC: 5, 10, 20, 30, 40 

𝑅𝑆𝐼 𝑆𝑇𝑂𝐶(𝑡𝑖, ∆𝑡, ∆𝑡𝑟𝑠𝑖) =
𝑅𝑆𝐼(𝑡𝑖) − min(𝑅𝑆𝐼(𝑡𝑖−∆𝑡 , ∆𝑡𝑟𝑠𝑖), … , 𝑅𝑆𝐼(𝑡𝑖, ∆𝑡𝑟𝑠𝑖))

max(𝑅𝑆𝐼(𝑡𝑖−∆𝑡 , ∆𝑡𝑟𝑠𝑖), … , 𝑅𝑆𝐼(𝑡𝑖, ∆𝑡𝑟𝑠𝑖)) − min(𝑅𝑆𝐼(𝑡𝑖−∆𝑡 , ∆𝑡𝑟𝑠𝑖), … , 𝑅𝑆𝐼(𝑡𝑖−∆𝑡 , ∆𝑡𝑟𝑠𝑖))
 

𝑅𝑆𝐼 𝑆𝑇𝑂𝐶𝑠(𝑡𝑖, ∆𝑡, ∆𝑡𝑟𝑠𝑖) =  
1

3
∑ 𝑅𝑆𝐼 𝑆𝑇𝑂𝐶(𝑡𝑖, ∆𝑡, ∆𝑡𝑟𝑠𝑖)

𝑡𝑖

𝑡𝑖−3

 

 

𝑅𝑆𝐼 𝑆𝑇𝑂𝐶𝑠𝑠(𝑡𝑖, ∆𝑡, ∆𝑡𝑟𝑠𝑖) =  
1

3
∑ 𝑅𝑆𝐼 𝑆𝑇𝑂𝐶𝑠(𝑡𝑖, ∆𝑡, ∆𝑡𝑟𝑠𝑖)

𝑡𝑖

𝑡𝑖−3

 

 

Table 1: Overview of used predictors and time windows.   
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All 

predictors 

 All subjects (n = 267) MS subjects (n = 213) HC subjects (n = 54) 

Full model 

baseline 

𝑟𝑚𝑒𝑎𝑛 0.326 ± 0.093 0.253 ± 0.044 0.087 ± 0.228 

 𝑟𝑡𝑜𝑡𝑎𝑙 0.309 (p = 2.55e-07) 0.239 (p = 4.25e-04) -0.019 (p = 8.90e-01) 

 𝑛𝑓𝑒𝑎𝑡 18200 18200 18200 

Full model 

All predictors 

𝑟𝑚𝑒𝑎𝑛 0.358 ± 0.084 0.379 ± 0.095 0.325 ± 0.268 

 𝑟𝑡𝑜𝑡𝑎𝑙 0.363 (p = 9.39e-10) 0.369 (p = 2.94e-08) 0.054 (p = 7.00e-01) 

 𝑛𝑓𝑒𝑎𝑡 47320 47320 47320 

Minimal 

model 

𝑟𝑚𝑒𝑎𝑛 0.459 ± 0.139  0.681 ± 0.099 

 𝑟𝑡𝑜𝑡𝑎𝑙 0.459 (p = 2.39e-15)  0.645 (p = 1.40e-07) 

 𝑛𝑓𝑒𝑎𝑡 2  2 

Top 10 

predictor 

model 

𝑟𝑚𝑒𝑎𝑛 0.652 ± 0.119  0.872 ± 0.097 

 𝑟𝑡𝑜𝑡𝑎𝑙 0.657 (p = 2.59e-34)  0.883 (p = 1.07e-18) 

 𝑛𝑓𝑒𝑎𝑡 10  10 

Table 2: Prediction results for all subjects, MS and HC. The baseline model based on classical 

functional connectivity measures generally performs weakest and no reliable model for HC is 

generated. Results from the minimal model show that two predictors are sufficient to predict cognitive 

scores reliably. This performance is further improved when the top ten predictors from recursive 

feature elimination are used. 


